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ABSTRACT: The normal differentiation of follicles from the preantral to the antral stage is regulated by the syn-
thesis and secretion of several important growth factors. Moreover, the proper growth and development of the 
oocyte and its surrounding somatic granulosa-cumulus cells is accomplished through the activation of paracrine 
pathways that form a specific cross-talk between the gamete and somatic cells. It has been shown that several 
growth factors produced by the ovary are responsible for the proper growth and development of follicles. The 
developmental competence of mammalian oocytes (also termed developmental potency) is defined as the ability 
of female gametes to reach maturation (the MII stage) and achieve successful monospermic fertilisation. Proper 
oocyte development during folliculo- and oogenesis also plays a critical role in normal zygote and blastocyst for-
mation, as well as implantation and the birth of healthy offspring. Several molecular markers have been used to 
determine the developmental potency both of oocytes and follicles. The most important markers include transform-
ing growth factor beta superfamily genes (TGFB), and the genes in this family have been found to play a crucial 
role in oocyte differentiation during oogenesis and folliculogenesis. In the present review, we summarise several 
molecular aspects concerning the assessment of mammalian oocyte developmental competence. In addition, we 
present the molecular mechanisms which activate important growth factors within the TGFB superfamily that 
have been shown to regulate not only follicle development but also oocyte maturation.
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1. Introduction

In all mammalian species, the proper course of 
folliculogenesis and oogenesis is the main factor 
that influences the growth and development of 
cumulus-oocytes complexes, the maturation of 
oocytes to reach the MII stage and subsequently 
monospermic fertilisation (Chaves et al. 2012; 
Songsasen et al. 2012; Jovanovic et al. 2013; Linke 
et al. 2013; Sobinoff et al. 2013). Developing from 
the preantral into the antral stage, the follicle is 
finally morphologically modified to three separate 
populations of somatic cell: theca cells, granulosa 
cells and cumulus oophorus (Figure 1). In the perio-
vulatory period, the cumulus cells surrounding the 
oocyte expand. The process of cumulus expansion 
is associated with the proliferation of cumulus cells 
and of granulosa to cumulus differentiation. It has 
been demonstrated that the surrounding oocyte-
granulosa-cumulus cells can proliferate and dif-
ferentiate in vitro (Kempisty et al. 2013). However, 
the in vitro proliferation of cumulus cells may only 

mimic in vivo conditions, and how the proliferation 
of granulosa-cumulus cells proceeds in a follicular 
environment is still speculative.

Since Derynck et al. (1985), first identified a par-
tial amino acid sequence from transforming growth 
factor beta 1 (TGFB1) purified from blood platelets, 
numerous studies have highlighted the role of this 
peptide as a modulator of cell growth, prolifera-
tion and differentiation in many types of cells and 
tissues (Gilchrist and Ritter 2011; Nagamatsu et 
al. 2012). It is also thought that TGF proteins are 
involved in the regulation of oocyte and embryonic 
growth and development.

Although the expansion process in cumulus cells 
has been well documented, the molecular markers 
of this phenomenon are still not entirely known. 
Moreover, there is not much evidence on the role 
of TGFs as regulatory proteins during folliculo- and 
oogenesis in mammals. Therefore, in the present 
review, recent findings regarding the role of TGF 
superfamily genes and proteins during folliculogen-
esis and oogenesis will be presented and discussed.

Figure 1. Factors involved in primordial germ cell (PGC) formation, oogenesis and folliculogenesis. Ovarian factors 
regulate oocyte and follicle development: produced by theca/stromal cells (blue), somatic/granulosa cells (pink), 
germ cells (gray) and in both germ cells and granulosa cells (green), at different stages of development. Proteins 
participating in PGC formation (from extra embryonic ectoderm) are indicated in black
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2. The expression profile of genes of the TGFB 
superfamily during folliculogenesis

Several research groups have demonstrated that 
the TGFB superfamily genes and proteins are ex-
pressed in ovarian tissues (Ergin et al. 2008; Zhu 
et al. 2010; Hatzirodos et al. 2011; Nagashima et 
al. 2011). Recent studies have shown that the mor-
phological and genetic transition from the primor-
dial follicle stage through to ovulation and corpus 
luteum formation is associated with the activation 
of a growth factor signalling cascade that highly 
regulates the proliferation and differentiation of 
ovarian cells (Figure 1), (Nagashima et al. 2011; 
Joseph et al. 2012; Kawano et al. 2012). The most 
important growth factors include genes of the 
TGFB superfamily that are expressed in mamma-
lian ovarian somatic cells and in oocytes in a stage-
specif ic manner,  and thereby,  function as 
intraovarian regulators of folliculogenesis (Paradis 
et al. 2009; Nagashima et al. 2011; Corduk et al. 
2012). The most important TGFB superfamily 
genes include bone morphogenic proteins 2, 4, 5, 
6, 7, and 15 (BMP2, BMP4, BMP5, BMP6, BMP7, 
and BMP15) and growth differentiation factor 9 
(GDF9), which are expressed throughout follicu-
logenesis and regulate key steps of follicle growth 
and development (Figure 2), (Knight and Glister 
2006). The role of TGFB superfamily gene expres-
sion in the regulation of mouse folliculogenesis has 
been thoroughly studied using mouse knockout 
models (Li et al. 2012; Pangas 2012). However, the 
possible functions of these proteins in follicular 
development and/or differentiation of ovarian so-
matic cells of domestic animals have yet to be high-
lighted. Shimizu et al. (2004) investigated the 
expression of GDF9, BMP4, BMP5 and BMP6 
mRNA in neonatal pigs. They found that the mo-
lecular interaction between these growth factors 
significantly influenced the regulation of growth 
factor-derived folliculogenesis in the neonatal pig. 
They demonstrated also a species-specific expres-
sion of these growth factors in a follicle develop-
ment-dependent manner. Consequently, these 
growth factors may play a distinct role during fol-
liculogenesis. Along with the role of TGFB in the 
molecular regulation of follicle growth, multiple 
studies have highlighted the role of TGF-alpha 
(TGFA) during this process with regard to other 
proteins, e.g., laminin. There has not been substan-
tial data supporting the association between the 
oestrous cycle in mammals and laminin versus 

TGFA interaction during folliculogenesis (Irving-
Rodgers et al. 2006; Tse and Ge 2010). Recently, 
Akkoyunlu et al. (2003) used the immunoperoxi-
dase method to investigate the possible function 
of these factors during rat folliculogenesis. After 
analysing ovaries collected from adult virgin female 
rats, they found that TGFA was localised in the 
nuclei of oocytes, whereas the differential distribu-
tion of this protein was observed in granulosa and 
interstitial thecal cells. Laminin and fibronectin 
were localised in the vascular walls, in the outer 
layers of granulosa cells, suggesting that TGFA may 
play a role during follicular maturation. TGFA may 
also be involved in the formation of basement 
membranes of growing follicles. Drummond et al. 
(2002) studied the role of the TGFB/BMP/activin 
signalling pathway in the ovaries of postnatal rats. 
Using real-time PCR expression assays, they ob-
served the presence of activin/BMP receptors 
(ActRIA, ActRIB, ActRIIA, and ActRIIB), beta gly-
can and Smad1-8 in the rat ovary. The expression 
of activin receptors and Smad superfamily genes 
were generally related to the formation of a second-
ary follicle. At the antral follicle stage, the activin 
receptors and Smad genes were expressed in a 
gene-dependent manner. Moreover, all of the iden-
tified activin-Smad superfamily gene expression 
was present in oocytes at all stages of follicle de-
velopment, and both in granulosa and theca cells. 
These results confirm the supposition that the 
TGFB/activin/Smad signaling cascades are key 
regulators of follicle growth and development 
(Figure 2). A significant role of the TGFB superfam-
ily genes in the regulation of mammalian follicu-
logenesis was previously investigated using a 
knockout mouse model for the GDF9 (GDF9–/–) 
gene (Dong et al. 1996). These experiments dem-
onstrated that folliculogenesis was arrested at the 
primary follicle stage in the absence of GDF9, lead-
ing to infertility. Laitinen et al. (1998), found a 
cDNA analogue of GDF9, designated as GDF9B, 
and this gene was also found to be involved in the 
regulation of folliculogenesis in mice. Furthermore, 
they showed that GDF9 and GDF9B were co-ex-
pressed and co-localized in the oocyte during fol-
licle growth and development. Growth and 
development of follicles are regulated by the syn-
thesis and secretion of several significant growth 
factors produced by oocyte/granulosa cells. These 
growth factors are secreted by the oocytes to the 
granulosa cells and thereby activate follicle-specif-
ic mechanisms via paracrine regulation. Recent 



Review Article Veterinarni Medicina, 58, 2013 (10): 505–515 

508

studies have demonstrated a role of oocyte-specif-
ic factors which belong to the TGFB superfamily, 
and which include BMP15 and GDF9. TGFB su-
perfamily gene expression as well as immunohis-
tochemical localisation of proteins was recently 
investigated in different animal models, including 
rats, pigs and sheep. Thus, Ergin et al. (2008), ana-
lysed the immunohistochemical expression of 
IGF-I, TGFB2, bFGF and epidermal growth factor 
receptor (EGFR) in rat ovaries, collected from new-
born, one-month-old and adult females. An in-
creased expression and distribution of all of these 
proteins was observed in oocytes and in ovaries 

isolated from one-month-old rats. A moderate ex-
pression of only IGF-I was found in the theca cells 
and in the corpora lutea of adult females, and a 
similar expression pattern was observed in the 
granulosa cells of new-born ovaries. Furthermore, 
a moderate staining of TGFB2 protein was ob-
served within the ovaries of adult rats, as well as 
of EGFR in the granulosa cells of one-month-old 
females. These results underline a role for growth 
factors in the regulation of ovarian development 
in rats. The expression of TGFB1 and TGFB2 in the 
ovaries of other mammals, including pigs, has been 
recently shown. However, little is known, e.g., about 

Figure 2. Representative figure of TGF-β signalling pathways. TGF-β cytokines are highly pleiotropic factors that 
regulate a wide range of cellular processes during development and adult tissue homeostasis (cell proliferation, 
apoptosis, epithelial-to-mesenchymal transition, angiogenesis). TGF-β can activate a number of Smad-independ-
ent signalling pathways in a cell type-specific and context-dependent manner, including Ras/MAPK, PI 3-K/Akt, 
p38, JNK, and RhoA/ROCK. Activation of these pathways may also contribute to the cellular responses induced 
by TGF-β. Based on leaflet product information (R&D Systems)
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the regulation of the expression of these growth 
factors expression during various stages of the oes-
trous cycle in pigs. Most of the recent studies high-
lighted the significance of TGFB1 and TGFB2. 
However, Steffl et al. (2008) investigated the expres-
sion of TGFB3 mRNA at different stages of the 
porcine oestrous cycle and follicle development. 
The expression pattern of TGFB3 was analysed us-
ing RT-PCR assays and immunohistochemistry. 
The expression of TGFB3 was observed throughout 
the oestrous cycle; however, there was an increase 
in expression at met- and dioestrous. Low levels 
of immunoreactivity were detected in follicular 
epithelial cells and in the oocytes of preantral fol-
licles. The exclusive expression of the TGFB3 pro-
tein was observed in the theca internal cell layer 
of antral follicles, whereas this expression was sig-
nificantly increased in large antral follicles. A 
higher distribution of TGFB3 protein in the theca 
cell layer, soon after ovulation, was also observed. 
Considering all of these results, it may be assumed 
that the expression pattern of TGFB3 modulates 
the development of theca cells of growing follicles 
and, therefore, actively regulates the differentiation 
of theca cells of pre- and post-ovulatory follicles 
in pigs. It was also shown in cows that ovarian fol-
licle development requires the activation of sev-
eral paracrine and endocrine factors that are 
synthesised by ovarian cells, and which regulate 
the growth and development of follicles. The role 
of bovine theca cells in this process was recently 
investigated (Spicer et al. 2008). In this study, the 
effect of GDF9 on theca cells isolated from large 
(8–22 mm) and small (3–6 mm) follicles was ana-
lysed and it was observed that the cultivation of 
theca cells isolated from small follicles with sup-
plementation of LH, IGF1 and GDF9 leads to in-
creased cell numbers and higher levels of DNA 
synthesis, whereas theca cells isolated from large 
follicles did not respond to incubation with GDF9. 
Furthermore, the cultivation of theca cells of small 
follicles resulted in down-regulated LHR and 
CYP11A1 mRNA expression, but the mRNA levels 
for IGF1R, STAR and CYP17A1 were not signifi-
cantly altered. The expression of GDF9 mRNA was 
also analysed in granulosa cells and theca cells. 
While the GDF9 mRNA levels in granulosa cells 
isolated from small follicles were significantly 
higher compared to those from large follicles, no 
GDF9 mRNA expression was detected in theca 
cells. Thus, theca cells of small follicles may be 
more sensitive to stimulation by GDF9, and bovine 

granulosa cells may synthesise GDF9, but only in small 
follicles. It has been proposed that GDF9 promotes 
theca cell proliferation as well as decreases steroido-
genesis and may, therefore, also prevent theca cells 
from premature differentiation during folliculogen-
esis. It was also previously demonstrated that genet-
ic alterations, e.g., mutations in the GDF9 gene lead 
to infertility in sheep due to ovarian dysfunction 
(Otsuka et al. 2011).

3. TGF gene expression in relation to 
angiogenesis and folliculogenesis

One important stage of follicle growth and develop-
ment is angiogenesis, which requires the activation 
of several proteins and growth factors. Angiogenesis 
is a process that occurs during follicle growth and 
luteinisation. It is thought that FSH secreted by the 
pituitary gland regulates the expression of TGFB1 
in oocytes-granulosa cells. Such a relationship be-
tween ovarian angiogenesis and the expression of 
TGFB1 stimulated by secretion of FSH was recently 
investigated (Kuo et al. 2011). Gonadotropin-primed 
granulosa cells of immature rats were incubated with 
FSH and/or TGFB. FSH and TGFB stimulated the 
angiogenic activity of granulosa cells as well as an 
up-regulation of angiogenic-specific gene expression 
(VEGF and PDGF-B). However, when specific inhibi-
tors for VEGF (Ki8751) and/or for PDGF (AG1296) 
were additionally applied in the experiment, these in-
hibitors led to the suppression of microvessel growth 
in treated granulosa cell cultures. In summary, FSH 
and TGF up-regulate the expression of angiogenic-
specific genes and both of these molecules stimulate 
the angiogenesis of ovarian-granulosa cells during 
follicle growth. Other studies were done by Sharma 
et al. (2010), where the effects of several growth 
factors, including IGF-I, TGFA, TGFB1 and bFGF 
used alone or in combination with FSH, on the de-
velopment, survival, antrum formation and apop-
tosis of buffalo preantral follicles were investigated. 
TGFA and TGFB1 inhibited follicular survival and 
increased the incidence of oocyte apoptosis, whereas 
this effect was decreased by IGF-I + TGFA + TGFB1. 
Moreover, IGF-I alone significantly increased the 
survival and growth of follicles, and enhanced an-
trum formation. However, this stimulatory effect 
was strongest when FGF was used in the culture. It 
was also demonstrated that the concentrations of 
progesterone and oestradiol were higher in the pres-
ence of FGF and IGF-I when compared to TGFA and 
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TGFB1. Consequently, IGF-I and FGF enhanced 
the survival, development and antrum formation 
of buffalo follicles, whereas TGFA and TGFB1 in-
creased the apoptosis of oocytes. Arunakumari et 
al. (2010) successfully derived in vitro embryos 
at the morula stage after the cultivation of ovine 
preantral follicles. The follicles were cultured in 
media supplemented with several growth factors, 
i.e., insulin-transferrin-selenite (ITS), IGF-I, TGFB, 
insulin and growth hormone (GH). A combination 
of ITS, IGF-I, insulin and GH stimulated ovine fol-
licle growth and development, whereas, supple-
mentation with TGFB inhibited the maturation of 
oocytes to the MII stage.

The TGFB superfamily genes act via pathways 
including the BMP/Smad signaling cascade. In a 
special type of sheep, called the Hu sheep, the effect 
of these signalling pathways on the high fecundity 
of this breed was studied (Xu et al. 2010). Ewes 
were analysed for FecB (A746G) and BMPRIB gene 
mutations. RT-PCR expression analysis detected 
BMP associated genes (BMP2, BMP4, BMP6, BMP7 
and BMP15), BMP receptors (BMPRIA, BMPRIB 
and BMPRII), Smad family genes (Smad1, Smad4 
and Smad5), and other TGFB superfamily genes, 
such as TGFBRI and GDF9. All investigated ani-
mals were homozygous for mutations in BMPRIB 
(A746G), and all of the analysed TGFB superfamily 
genes were expressed in the Hu sheep ovary. It was 
also found that the expression of BMP4, BMPRIB, 
BMPRII, Smad4, GDF9 and TGF-betaRI mRNAs 
was increased in antral follicles of high-fecundity 
females compared to low-fecundity ewes, whereas 
BMP15 expression was decreased. Accordingly, 
the TGFB/BMP/Smad signalling cascade plays a 
significant role during Hu sheep ovarian follicu-
logenesis. However, there could be several other 
mutations in TGFB-related genes outside of 
BMPRIB that could influence proper folliculo-
genesis. In Woodland sheep, a reoccurring genetic 
mutation (FecX2(W)) was shown to increase the 
ovulation rate (Feary et al. 2007). The FecX2(W) 
mutation is characterised as a mutation present 
in the BMP15 gene and/or GDF9, both of which 
interact with BMP15 in the regulation of ovarian 
function, including ovulation. Furthermore, this 
mutation may regulate the expression pattern of 
genes contributing to the regulation of ovulation 
rate. Feary et al. (2007) analysed the sequence of the 
coding region of the BMP15 and GDF9 genes and 
performed RT-PCR expression analysis of GDF9, 
BMP15, TGFBR1, BMPR1B, and BMPR2 mRNAs 

during follicular development. No changes in the 
coding sequence of the BMP15 and GDF9 genes 
in females characterised by an increased ovula-
tion rate were identified and the expression levels 
of mRNAs encoding GDF9 and BMPR2 did not 
differ. However, the expression of BMP15 mRNA 
decreased in oocytes from FecX2(W) sheep in large 
preantral and antral follicles. However, the expres-
sion of ALK5 was significantly increased in oocytes 
from ewes characterised by the Woodlands muta-
tion. The mRNA levels of BMPR1B were lower in 
oocytes and in granulosa cells of FecX2(W) ewes. 
The number of antral follicles <1 mm in diameter 
in FecX2(W) ewes was also higher. Evidently, mu-
tations in the BMP15 and/or BMPR1B genes and, 
subsequently, differential expression of BMP15 and 
BMPR1B mRNAs may alter ovulation rate in sheep.

The role of FSH in the expression of TGFB su-
perfamily genes has also been investigated. Chen 
et al. (2009a,b) investigated in vitro the effect of 
FSH treatment on the expression profile of BMP15 
and GDF9 in ovine granulosa cells, as well as the 
effect of FSH and oestradiol (E2) on the regulation 
of BMPRII, BMPRIB and ALK-5. An increased ex-
pression of BMPRII, BMPRIB and ALK-5 was found 
in granulosa cells collected from large compared to 
smaller follicles. Moreover, the incubation of granu-
losa cells with different FSH concentrations inhib-
ited the expression of BMPRIB, or the expression of 
BMPRII and ALK-5 mRNAs was unchanged com-
pared to control. Only high doses of FSH decreased 
the expression of BMPRII and ALK-5 in granulosa 
cells. However, combined treatment with FSH and 
oestradiol increased the expression of all investi-
gated genes, i.e., BMPRII, BMPRIB and ALK-5.  
This observation supported data from previous stud-
ies suggesting the existence of paracrine activation 
pathways between oocytes and granulosa cells, and 
the regulation of BMP15 receptors by FSH and 
E2 secretion (Jayawardana et al. 2006; Chen et al. 
2009a). Furthermore, it is evident that hormones of 
the pituitary and ovary have a significant role in the 
regulation of granulosa cell differentiation. Proper 
differentiation of granulosa cells also requires the 
activation of several other TGFB superfamily genes, 
such as Smad-related genes. It has been demonstrat-
ed that the ablation of Smad-related genes (mainly 
Smad2 and Smad3) leads to reduced female fecun-
dity as a result of irregular ovarian processes and 
impaired follicular development, intrafollicular oo-
cyte development and ovulation (Tomic et al. 2002). 
The role of the expression of Smad-related genes 
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during the growth and development of granulosa 
cells was recently investigated by (Li et al. 2008). 
They found that Smad2 and Smad3 are essential for 
normal follicle development and for oocyte matura-
tion to achieve developmental competence.

The expression of mRNAs encoding Smads 
(-1, -2, -3, -5 and -9), Smad4 (co-Smad), Smad6 
and Smad7 (inhibitory Smads) was observed in 
oocytes of preantral and antral follicles (Tian et 
al. 2010). The expression of Smad5, Smad6 and 
Smad7 was increased in growing compared to fully 
grown oocytes. In oocytes isolated from primor-
dial, primary, secondary and antral follicles, pS-
MAD1/5/9, pSMAD2 and pSMAD3 were present. 
Immunostaining for pSMAD2/3 and pSMAD1/5/9 
revealed the presence of these proteins in granu-
losa cells of primordial and secondary follicles. A 
significantly increased expression of pSMAD pro-
teins was also detected in cumulus cells of antral 
follicles. Additionally, pSMADs were present in the 
oviductal epithelium.

4. TGFB superfamily gene expression during 
oogenesis

Although it is assumed that the TGFB gene ex-
pression signalling cascade is necessary for oocyte 
development during folliculo- and oogenesis, there 
is no substantial supporting evidence (Levacher et 
al. 1996; Bukowska et al. 2012). However, it is well 
known that normal mammalian oocyte maturation 
and development require somatic cumulus cell ex-
pansion (CCE) (Jain et al. 2012; Barberi et al. 2013; 
Caixeta et al. 2013; Gharibi et al. 2013; Mito et al. 
2013). This process is regulated by, among others, 
paracrine signalling of oocyte-cumulus cell secret-
ed growth factors (Su et al. 2009; Romaguera et al. 
2010; Hussein et al. 2011). However, in three out of 
the four species studied to date, CCE did not require 
the presence of oocytes (Nagyova 2012; Watson et 
al. 2012; Gharibi et al. 2013). To study this process, 
Gilchrist and Ritter (2011) analysed the paracrine 
mechanisms of the Smad/MAPK signalling cascade 
comparing porcine and murine cumulus-oocyte-
complexes (COCs). Treating COCs and oocyte-free 
complexes (OOXs) with FSH and TGFB superfam-
ily antagonists, they found that the inhibition of 
TGFB superfamily genes, such as GDF9, TGFB, ac-
tivin A, and activin B, and several BMP superfamily 
genes did not affect the CCE of porcine COCs. 
Additionally, they demonstrated that porcine oo-

cytes synthesise and secrete factors that activate 
Smad3 and Smad1/5/8 in granulosa cells, whereas 
murine oocytes only activate the Smad3 gene. The 
cultivation of porcine oocytes with the Smad2/3 
phosphorylation inhibitor SB431542 partially af-
fected the CCE, whereas the CCE of murine COCs 
was totally inhibited. This study also revealed that 
the inhibition of MAPK-related genes (ERK1/2 and 
p38) leads to decreased CCE in porcine oocytes. 
From this study it is evident that the Smad-related 
pathway is involved in cumulus expansion, but in 
a species-specific manner. Moreover, the activa-
tion of the Smad signalling cascade in porcine CC 
appears to be essential for the matrix formation of 
growing oocytes via the up-regulation of the MAP 
kinase signalling pathway.

Oogenesis is a complex process that is regulated 
by several intra- and extraovarian factors (Sanchez 
and Smitz 2012). In recent years, considerable at-
tention has been focused on members of the TGFB 
superfamily as potential local regulators between 
the oocyte and the granulosa cell layer, facilitat-
ing appropriate oocyte development (Knight and 
Glister 2006). Oocyte paracrine growth factors 
BMP-6, BMP15, GDF9 have been shown to be criti-
cal components of the intra-follicular communica-
tion pathways (Su et al. 2004).

The participation of TGFB proteins in the growth 
and maturation of oocytes begins at early stages of 
oogenesis during primordial germ cell (PGC) for-
mation (Figure 1), (Ying et al. 2000; Ying and Zhao 
2001). The precursors of PGCs are located in the 
proximal region of the epiblast adjacent to the ex-
traembryonic ectoderm (Ginsburg et al. 1990) and 
can be identified as a cluster of alkaline phosphatase-
positive cells located in the extraembryonic meso-
derm posterior to the primitive streak (Ying et al. 
2000). It has been demonstrated that BMP, BMP4, 
BMP8b (ectoderm-derived) and BMP2 (endoderm-
derived) are required for PGC generation, prolif-
eration and further colonisation (Lawson and Hage 
1994). In vitro studies confirmed that BMP2 and 
BMP4 increase the number of murine PGCs in 
culture (Pesce et al. 2002), whereas Bmp7 mouse 
knockouts demonstrate a reduction in the number 
of germ cells around this period (Ross et al. 2007). 
Other studies provide species-dependent evidence 
for the role of TGF superfamily members. In human 
primordial germ cells, activin has been shown to 
increase the number of PGCs (Martins da Silva et al. 
2004), whereas in mouse-derived PGC, activin acts 
as an inhibitor of proliferation (Richards et al. 1999).
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PGCs progress step-wise and finally develop into 
primordial follicles with oocytes surrounded by pre-
granulosa cells. Studies in rodents have revealed that 
steroids and members of the TGF superfamily, in-
cluding GDF9 and BMP15, are involved in this pro-
cess (Bristol-Gould et al. 2006; Sanchez and Smitz 
2012). The development of primary follicles to the 
late preantral and early antral stages involves folli-
cular growth, fluid-filled antrum formation and oo-
cyte enlargement and an increase in volume and size 
(Bachvarova et al. 1985; Durinzi et al. 1995; Eppig 
and O’Brien 1996; Picton et al. 1998). Throughout 
this period, oocytes synthesise and accumulate 
RNAs and proteins that are vital for their appropri-
ate growth and maturation (Picton et al. 1998).

It has been shown that TGF-superfamily mem-
bers, including inhibin, activin and follistatin, 
which are expressed by companion granulosa 
cells, play an essential role in cytoplasmic and 
nuclear maturation of oocytes (Figure 2), (Eppig 
2001). This was confirmed by the localisation of 
their receptors on the surface of oocytes in several 
species. In vitro studies have revealed that activin 
can accelerate meiotic maturation in primate and 
rodent oocytes in a follistatin-reversible manner 
(Sadatsuki et al. 1993; Alak et al. 1996, 1998). In 
cows it was demonstrated that activin A had no ef-
fect on the post-fertilisation cleavage stage of both 
denuded and cumulus-enclosed oocytes; however, 
their competence to form blastocysts was enhanced 
in a follistatin-dependent reversible manner (Silva 
and Knight 1998). These studies confirmed also a 
correlation between endogenous activin concentra-
tion in the cumulus-oocyte complex and oocyte 
developmental competence. However, some studies 
have also shown that inhibin, as well as its free α 
subunit, may have a negative influence on devel-
opmental competence and maturation of oocytes 
(WS et al. 1989; Silva et al. 1999).

From the summarised research data it becomes 
evident that members of the TGF superfamily are 
crucially involved in the processes of follicular and 
oocyte development. Although several molecular 
aspects have been already elucidated, much work 
remains to be done if we are to understand these 
vital processes in their entirety.
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