Levels of fatty acids in the whole body of hens and cocks of the Cobb 500 and Ross 308 hybrid combinations at the end of the fattening period

P. Suchy, E. Strakova, I. Herzig

Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic

Keywords: saturated fatty acids; monounsaturated fatty acids; polyunsaturated fatty acids; n-6; n-3

The levels of fatty acids in vegetable and animal fats are of nutritional, dietetic and health relevance for both humans and animals. This is due to the physiological functions of fats in living organisms and the roles of the individual fatty acids (FA) in dietology, prevention and therapy of diseases related to their deficiency or overdosing.

Sources of lipids in human nutrition include both vegetable oils and fats of animal origin. Lipids of animal origin may represent a relevant source of FA in human diets. Human diet experts recommend a low intake of saturated fatty acids (SaFA) and high intake of poly-unsaturated FA (Mataix et al. 2001), above all FA with long n-3 chains (Connor 2000; Larsson et al. 2004). The ideal ratio of FA n-6:n-3 is 4:1, or lower (Simopoulos 1999).

At present, poultry meat constitutes a significant proportion of human diets. Therefore, monitoring

the levels of individual FA in the bodies of broiler chickens is important. A large body of evidence shows that FA levels in the meat of animals bred for meat, including broiler chickens, depend to a considerable extent on their levels in the diet (Kralik et al. 2004; Azman et al. 2005; Rymer and Givens 2005; Ortiz et al. 2006; Aldai et al. 2008; Zelenka et al. 2008 and others).

Levels of FA in animal products (eggs, meat, milk) reflect both biosynthesis and FA composition of the digested lipids. This relationship is stronger in monogastric animals (pig, poultry, rabbit) than in ruminants, where the dietary fatty acids may be hydrogenated in the rumen (Kouba and Mourot 2011). FA composition in meat is affected by genetic factors, but more significantly by dietary factors (De Smet et al. 2004). Broiler chickens were tested for the effect of diet on FA composition in broiler tissues, for example in connection with administra-

Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. MSM 6215712402).

tion of sunflower seeds (Ortiz et al. 2006), soy oil, poultry fat, beef tallow (Azman et al. 2004; Azman et al. 2005), fish oil (Kralik et al. 2004), linseed (Ozpinar et al. 2003) as well as white lupine seeds, in diets enriched with fats of animal or vegetable origin (Mieczkowska and Smulikowska 2005).

Literature data concerning FA levels in the whole chicken body are scattered, and data for the currently bred and used broiler hybrids are completely missing. The genetic potential of broiler chickens has increased significantly in recent years and the higher yield has resulted in altered nutritional needs (Selehifar et al. 2012), and presumably also in altered proportions of bio-active substances in the body. Therefore, this study focused on levels of individual FA in the whole chicken body, including feathers, at the end of the fattening period in the Cobb 500 and Ross 308 hybrid combination and compared the observed differences with respect to gender.

MATERIAL AND METHODS

Animals. The trial was performed on 160 1-day-old sex-sorted broiler chickens of the Cobb 500 and Ross 308 hybrids. Four trial subgroups were formed, consisting of 40 hens and 40 cocks of each hybrid and sex.

Environment. The trial was performed in the accredited trial stable of the Institute for Animal Nutrition of the University of Veterinary and Pharmaceutical Sciences in Brno. The chickens were kept in four separate pens on deep bedding, separated by hybrid and sex. Animal density in the pens corresponded to the optimum surface loading throughout the fattening period, i.e. 17 chickens per 1 m². The lighting mode was set to 23 h of light and 1 h of darkness. Microclimatic conditions including ventilation were controlled automatically. The temperature of the bedding at trial commencement was 34 °C and was reduced daily by 0.3–0.4 °C, reaching 18 °C at the end of the trial.

Feeding. During the fattening period, the chickens of both hybrids received identical complex rations, the starter mix (BR1) on Days 1–9, the grower mix (BR2) on Days 10–30 and the finisher mix (BR3) on Days 31–40. Mixes BR2 and BR3 were identical, except that anticoccidial drugs were removed from the finisher mix. The composition and levels of basic nutrients, minerals, amino acids and fatty acids in the BR feed mix are presented in Tables 1–4. The diet was not fortified with fat. The feeding and drinking

Table 1. Ingredient composition of the feed mix

	(g/kg)
Wheat	586.45
Solvent extracted soybean meal	226.5
Corn	157.25
Calcium carbonate	10.7
Monocalcium phosphate	5.7
Sodium chloride	2.5
L-Threonine	1.0
Methionine hydroxy analogue	2.7
L-Lysine (fluid)	4.0
Actigen	0.2
Noack AC AL 2	1.0
Ag-BR/UNI P 0.2% (AG-12352)	2.0

space corresponded to the requirements defined in the technological procedures for Cobb 500 and Ross 308 hybrids (Anonymous 2012; Anonymous 2014a; Anonymous 2014b). Feed intake and access to water were *ad libitum*. The health status of the chickens was monitored on an ongoing basis. At the end of the 40-day fattening period 10 cocks and 10 hens of the Cobb hybrid and the same numbers of the Ross hybrid were randomly selected. The selected chickens were slaughtered after 24 h of starvation, with free access to water, and their whole bodies, including feathers, were individually analysed.

Laboratory methods. Whole chicken bodies including feathers were homogenized in a K 120 F High Speed Cutter® (PSS Svidnik, Slovakia) which cuts, grinds and mixes the processed material in three steps. The homogenisation product was weighed, dried and the chicken whole-body dry matter was calculated. Before the chemical analysis,

Table 2. Levels of basic nutrients and minerals in grower (BR2) and finisher feed mixes (BR3) (g/kg)

	(g/kg)		
Dry matter	888.30	1000.00	
N-substances	182.40	205.30	
Fat	76.40	86.00	
Fibre	21.30	24.00	
NFE	561.90	632.60	
Starch	421.10	474.10	
Organic substance	842.00	947.90	
Ash	46.30	52.10	
Ca	8.50	9.60	
P	5.10	5.70	
Mg	1.90	2.10	

NFE = nitrogen-free extractives

Table 3. Levels of amino-acids in grower (BR2) and finisher feed mixes (BR3)

Amino acid	(g/kg)	Amino acid	(g/kg)
Asp	16.3	Met	2.2
Thr	6.9	Ile	7.9
Ser	8.4	Leu	12.5
Glu	34.9	Tyr	5.6
Pro	13.5	Phe	9.2
Gly	7.6	His	4.6
Ala	7.6	Lys	10.9
Val	8.6	Arg	13.3

the dried sample was homogenised using the Ultra Centrifugal Mill ZM $200^{\$}$ (Retsch, Germany).

The dry matter proportion in the product of the homogenisation was specified by drying and weighing at 105 °C. Nitrogen levels were determined using the Kjeldahl method in a Buchi analyzer® (Centec automatika, Czech Republic) and nitrogenic substance levels (crude protein) were calculated by multiplication of the nitrogen values by the coefficient 6.25. Samples of the feed mixes and the homogenisation product were used for specification of the individual FA levels. The analyses were performed in a gas chromatograph GC 2010 made

by Shimadzu. For more accurate reproducibility, all results are specified in the dry matter of the whole chicken body (g/kg of dry matter).

The complex feed mix was analysed to determine the level of basic nutrients (dry matter, N-substances, fat, starch, ash, calculation of NFE) and minerals (Ca, P, Mg) according to AOAC (2003).

Statistical analysis. The results were processed in Unistat CZ^{\otimes} statistical software, version 5.6 for Excel, where the mean values and their differences were evaluated by multiple comparisons with the help of the Tukey-HSD test, with significance levels of $P \le 0.01$ and $P \le 0.05$.

RESULTS

Basic nutrients and gross energy levels in feed mixes

The levels of basic nutrients and gross energy levels in the complex feed mixes fed during the trial corresponded to the recommended nutrient need for the given hybrids, Cobb 500 (Anonymous 2012) and Ross 308 (Anonymous 2014a). N-substance levels in BR2 and BR3 in the original dry matter

Table 4. Fatty acid levels in grower (BR2) and finisher feed mixes (BR3) (g/100 g of fat)

Fatty acid	,	Fatty acid	
Butyric C4:0	0.000	α-Linolenic C18:3n3	1.512
Caproic C6:0	0.015	Arachic C20:0	0.194
Caprylic C8:0	0.015	Cis-11-eicosenoic C20:1n9	0.520
Caprinic C10:0	0.071	Cis-11-14-eicosadienoic C20:2n6	0.189
Undecanoic C11:0	0.000	Cis-8,11,14-eicosatrienoic C20:3n6	0.076
Lauric C12:0	0.074	Heneicosanoic C21:0	0.000
Tridecanoic C13:0	0.007	Arachidonic C20:4n6	0.232
Myristic C14:0	1.289	Cis-11,14,17-eicosatrienoic C20:3n3	0.041
Myristoleic C14:1	0.152	Cis-5,8,11,14,17-eicosapentaenoic C20:5n3	0.031
Pentadecanoic C15:0	0.000	Negenic C22:0	0.068
Cis-10-pentadecanoic C15:1	0.000	Erucic C22:1n9	0.025
Palmitic C16:0	21.496	C22:2n6	0.000
Palmitoleic C16:1	2.175	C23:0	0.000
Heptadecanoic C17:0	0.486	C24:00:00	0.056
Cis-10-heptadecanoic C17:1	0.280	C22:6n3	0.035
Stearic C18:0	11.578	C24:1	0.023
Oleic/elaidic C18:1n9t + C18:1n9c	34.372	C22:4n6	0.000
Linoleic/linolelaidic C18:2n6c + C18:2n6t	16.387	C22:5n3	0.000
γ-Linolenic C18:3n6	0.102		

were 182.40 g/kg. In BR2 and BR3 in the dry matter, they reached 205.3 g/kg of dry matter. The values of gross energy equalled 19.5 MJ/kg of dry matter.

measured both in hens (Cobb 452.04 ± 6.039 g/kg vs Ross 430.14 ± 8.524 g/kg) and in cocks (Cobb 489.84 ± 6.771 g/kg vs Ross 477.34 ± 3.00 g/kg).

FA levels in feed mixes

The highest FA levels in the feed mixes (BR2 and BR3) fed between Day 10 and Day 40 of the fattening period were determined for oleic/elaidic, palmitic, linoleic/linolelaidic, stearic, palmitoleic, α -linolenic and myristic acids. The other FA levels were below 1 g/100 g of fat.

Weight of Cobb and Ross hybrid broiler chickens

At the end of the fattening period (Day 40), the mean weight of the Ross hybrid broiler chickens was higher ($P \le 0.05$) than the weight of the Cobb hybrid animals (2.40 ± 0.029 kg vs 2.31 ± 0.028 kg). The amount of fat in the whole body of broiler chickens in both hybrids was higher in hens (Ross 179.50 g/kg, Cobb 178.51 g/kg) than in cocks (Ross 150.52 g/kg, Cobb 155.85 g/kg). In the dry matter, the amount of fat in Ross hens was 456.26 g/kg, in Cobb hens 459.31 g/kg, in Ross cocks 418.74 g/kg and in Cobb cocks 422.50 g/kg.

Dry matter levels in Cobb and Ross hybrid broiler chicken bodies

The mean dry matter level in the whole body of broiler chickens was 376.54 ± 3.275 g/kg for the Ross hybrid, and 378.21 ± 2.473 g/kg for the Cobb hybrid. In both hybrids, the dry matter level values were higher in hens than in cocks ($P \le 0.01$).

Nitrogenic substance levels in dry matter of Cobb and Ross hybrid broiler chicken bodies

At the end of the fattening period, when the chickens were 40 days old, the levels of N-substances in the dry matter of the broiler chicken bodies, taking both sexes together, were 470.94 ± 5.404 g/kg of dry matter in the Cobb hybrid and 453.16 ± 5.916 g/kg of dry matter in the Ross hybrid. The difference was significant ($P \le 0.05$). Higher levels were

FA levels in dry matter of Cobb and Ross hybrid broiler chicken bodies

The highest level of FA (g/100 g of fat), regardless of the hybrid and the sex, was measured for oleic/elaidic acid (Cobb hens 38.95, Cobb cocks 39.59, Ross hens 41.18, Ross cocks 37.22). The second highest level was measured for palmitic acid (20.63, 21.93, respectively, in the Cobb hybrid, and 22.67, 20.21, respectively, in Ross). The third rank was occupied by linoleic/linolelaidic acid (8.69 and 9.81, respectively, for Cobb, and 9.58 and 9.45, respectively, for Ross). The next rank was represented by palmitoleic acid (5.63 and 5.99, respectively, for Cobb, and 6.22 and 5.51, respectively, for Ross) and stearic acid (5.18 and 5.67, respectively, for Cobb, and 5.73 and 5.26, respectively, for Ross). The levels of other FA were below 1 g/100 g of fat (Table 5).

In Cobb 500 hybrids (Table 5), the levels of all measured FA were higher in cocks than in hens. Differences in the values of all measured SaFA were significant ($P \le 0.05$; $P \le 0.01$), with the exception of caprylic acid. On the other hand, in the case of MUFA, no differences were found. For FA n-3, higher levels were measured for eicosatrienoic acid ($P \le 0.05$) and docosapentaenoic acid ($P \le 0.01$) and levels of all FA n-6 with the exception of γ -linolenic acid were higher ($P \le 0.01$).

In Ross 308 hybrids (Table 6), FA levels were mostly higher in hens. This was true for most SaFA, for palmitic acid ($P \le 0.01$), as well as for myristic, heptadecanoic and stearic acids ($P \le 0.05$). The levels of the following SaFA were higher in cocks: caproic, arachidic and negenic acids. The values of all MUFA were higher in hens, with differences in myristoleic FA ($P \le 0.05$) and oleic/elaidic acid ($P \le 0.01$) levels. The levels of FA n-6, with the exception of linoleic/linolelaidic and γ -linolenic acids, were higher in cocks. Differences ($P \le 0.05$) were found in *cis*-8,11,14-eicosatrienoic, docosatetraenoic and arachidonic acids ($P \le 0.01$). With the exception of α -linolenic acid, FA n-3 levels were higher in cocks, significantly so ($P \le$ 0.01) in the case of *cis*-5,8,11,14,17-eicosapentaenoic and docosapentaenoic acids.

Comparison of hens of the Cobb 500 and Ross 308 hybrids (Table 6) revealed generally lower lev-

Table 5. Fatty acid (FA) levels in hens and cocks of the Cobb 500 and Ross 308 hybrid (g/100 g of fat)

	Cobb 50	00	Ross 308	
Fatty acid (FA)	hens $(n = 10)$		hens $(n = 10)$	
	$\bar{x} \pm SD$	cocks	$\bar{x} \pm SD$	cocks
Saturated FA				
Caproic C6:0	$0.0038^a \pm 0.0008$	0.0049^{b}	0.0037 ± 0.0008	0.040
Caprylic C8:0	0.0057 ± 0.0009	0.0058	0.0060 ± 0.0009	0.0054
Caprinic C10:0	$0.0278^{A} \pm 0.0028$	0.0373^{B}	0.0398 ± 0.0179	0.0304
Lauric C12:0	$0.0360^{A} \pm 0.0024$	0.0424^{B}	0.0366 ± 0.0032	0.0365
Myristic C14:0	$0.6699^{A} \pm 0.0424$	0.7526^{B}	$0.7322^a \pm 0.0334$	0.7002^{b}
Palmitic C16:0	$20.63^{a} \pm 1.2140$	21.93^{b}	$22.67^{A} \pm 1.3390$	20.21^{B}
Heptadecanoic C17:0	$0.1795^{a} \pm 0.0155$	0.1946^{b}	$0.1928^a \pm 0.0151$	0.1771^{b}
Stearic C18:0	$5.180^{a} \pm 0.4614$	5.671 ^b	$5.7319^a \pm 0.4515$	5.2627^{b}
Arachic C20:0	$0.0723^{a} \pm 0.0065$	0.0808^{b}	0.0668 ± 0.0072	0.0735
Behenic C22:0	$0.0126^a \pm 0.0022$	0.0152^{b}	0.0132 ± 0.0020	0.0133
			0.01153 ± 0.0164	0.0
			0.0213 ± 0.0205	0.0026
Monounsaturated FA				
Myristoleic C14:1	0.1839 ± 0.0251	0.1993	$0.2116^a \pm 0.0244$	0.1906^{b}
Palmitoleic C16:1	5.628 ± 0.6985	5.989	6.2171 ± 0.7409	5.5107
Cis-10-heptadecanoic C17:1	0.1443 ± 0.0149	0.1557	0.1564 ± 0.0140	0.1475
Oleic/elaidic C18:1n9t + C18:1n9c	38.95 ± 1.6250	39.59	$41.18^{A} \pm 2.9480$	37.22^{B}
Cis-11-eicosenoic C20:1n9	0.3348 ± 0.0152	0.3483	0.3355 ± 0.0226	0.3159
Erucic C22:1n9	0.0126 ± 0.0025	0.0142	0.0129 ± 0.0017	0.0123
FA n-6				
Linoleic/linolelaidic C18:2n6c + C18:2n6t	$8.6873^{A} \pm 0.5740$	9.8073^{B}	9.578 ± 0.6439	9.449
γ-Linolenic C18:3n6	0.1086 ± 0.0131	0.1092	0.1158 ± 0.0137	0.1120
Cis-11,14- eicosadienoic C20:2n6	$0.0801^{A} \pm 0.0047$	0.0933^{B}	0.0870 ± 0.0056	0.0909
Cis-8,11,14-eicosatrienoic C20:3n6	$0.0561^{A} \pm 0.0046$	0.0712^{B}	$0.0595^{a} \pm 0.0068$	0.0666^{b}
Arachidonic C20:4n6	$0.2508^{A} \pm 0.0235$	0.3303^{B}	$0.2479^{A} \pm 0.0290$	0.3027^{B}
Docosatetraenoic C22:4n6	$0.0451^{A} \pm 0.0052$	0.0604^{B}	$0.0480^a \pm 0.0068$	0.0584^{b}
FA n-3				
α-Linolenic C18:3n3	0.6917 ± 0.0492	0.7729	0.7881 ± 0.0512	0.7570
Cis-11,14,17-eicosatrienoic C20:3n3	$0.0132^a \pm 0.0020$	$0.0157^{\rm b}$	0.0157 ± 0.0018	0.0165
Cis-5,8,11,14,17-eicosapentaenoic C20:5n3	0.0326 ± 0.0052	0.0372	$0.0320^{\rm A} \pm 0.0034$	0.0385^{B}
Cis-4,7,10,13,16,19-docosahexaenoic C22:6n3	0.0326 ± 0.0053	0.0422	0.0297 ± 0.0162	0.0364
Docosapentaenoic C20:5n3	$0.0471^{A} \pm 0.0078$	0.0596^{B}	$0.0320^{\rm A} \pm 0.0034$	0.0385^{B}

^{a,b}the mean values with same superscripts in the same parameter differ significantly ($P \le 0.05$)

els of all measure substances in the Cobb 500. The differences were significant in a number of cases. In the case of SaFA, this concerned myristic, palmitic ($P \le 0.01$) and stearic ($P \le 0.05$) acids, while in the case of MUFA the difference was significant for myristoleic acid ($P \le 0.05$). The values of FA n-6 were higher ($P \le 0.01$) in Ross hybrid hens in the case of linoleic/linolaidic and cis-11,14-eicosadienoic acids

and the values of FA n-3 showed the same difference in the case of α -linolenic acid ($P \le 0.01$).

Comparison of values measured in Cobb 500 and Ross 308 hybrid cocks (Table 6) showed generally higher levels in the Cobb 500 hybrid cocks. Levels of γ -linolenic, cis-11,14,17-eicosatrienoic, cis-5,8,11,14,17-eicosapentaenoic and docosatetraenoic acids represented exceptions to this trend and were

^{A,B}the mean values with same superscripts in the same parameter differ significantly ($P \le 0.01$)

SD = standard deviation

Table 6. Fatty acid (FA) levels in hens and cocks of the Cobb 500 and Ross 308 hybrids (g/100 g of fat)

	Hens		Cocks	
Fatty acid (FA)	Cobb 500 (<i>n</i> = 10)	D 200	Cobb 500 (<i>n</i> = 10)	
	$\bar{x} \pm SD$	Ross 308	$\bar{x} \pm SD$	Ross 308
Saturated FA				
Caproic C6:0	0.0038 ± 0.0037	0.0008	0.0049 ± 0.040	0.0012
Caprylic C8:0	0.0057 ± 0.0060	0.0009	0.0058 ± 0.0054	0.0007
Caprinic C10:0	0.0278 ± 0.0398	0.0179	0.0373 ± 0.0304	0.0098
Lauric C12:0	0.0360 ± 0.0366	0.0032	$0.0424B \pm 0.0365^{A}$	0.0046
Myristic C14:0	$0.6699^{B} \pm 0.7322^{A}$	0.0334	$0.7526^{B} \pm 0.7002^{A}$	0.0347
Palmitic C16:0	$20.63^{\text{B}} \pm 22.67^{\text{A}}$	1.3390	$21.9335^{\text{B}} \pm 20.2091^{\text{A}}$	0.9475
Heptadecanoic C17:0	0.1795 ± 0.1928^{a}	0.0151	$0.1946^{\mathrm{B}} \pm 0.1771^{\mathrm{A}}$	0.0103
Stearic C18:0	$5.180^{b} \pm 5.732^{a}$	0.4515	$5.6714^{b} \pm 5.2627^{a}$	0.3051
Arachic C20:0	0.0126 ± 0.0668	0.0072	0.0808 ± 0.0735	0.0137
Behenic C22:0	0.0126 ± 0.0132	0.0020	0.0152 ± 0.0133	0.0019
C23:0	0.0 ± 0.01153	0.0164	0.0 ± 0.0	0.0000
C24:0	0.0 ± 0.0213	0.0205	0.0026 ± 0.0026	0.0082
Monounsaturated FA				
Myristoleic C14:1	$0.1839^{b} \pm 0.2116^{a}$	0.0244	0.1993 ± 0.1906	0.0188
Palmitoleic C16:1	5.628 ± 6.217	0.7409	$5.9892^{b} \pm 5.5107^{a}$	0.5280
Cis-10-heptadecanoic C17:1	0.1443 ± 0.1564	0.0140	0.1557 ± 0.1475	0.0128
Oleic/elaidic C18:1n9t + C18:1n9c	38.95 ± 41.18	2.9480	39.5887 ± 37.2218	2.5328
Cis-11-eicosenoic C20:1n9	0.3348 ± 0.3355	0.0226	0.3483 ± 0.3159	0.0439
Erucic C22:1n9	0.0126 ± 0.0129	0.0017	$0.0142^{b} \pm 0.0123^{a}$	0.0016
FA n-6				
Linoleic/linolelaidic C18:2n6c + C18:2n6t	$8.687^{\text{B}} \pm 9.578^{\text{A}}$	0.6439	9.8073 ± 9.4486	0.8132
γ-Linolenic C18:3n6	0.1086 ± 0.1158	0.0137	0.1092 ± 0.1120	0.0176
Cis-11,14-eicosadienoic C20:2n6	$0.0801^{B} \pm 0.0870^{A}$	0.0056	0.0933 ± 0.0909	0.0127
Cis-8,11,14-eicosatrienoic C20:3n6	0.0561 ± 0.0595	0.0068	0.0712 ± 0.0666^{b}	0.0080
Arachidonic C20:4n6	0.2508 ± 0.2479	0.0290	0.3303 ± 0.3027^{B}	0.0396
Docosatetraenoic C22:4n6	0.0451 ± 0.0480^{a}	0.0068	0.0604 ± 0.0584^{b}	0.0102
FA n-3				
α-Linolenic C18:3n3	$0.6917^{\mathrm{B}} \pm 0.7881^{\mathrm{A}}$	0.0512	0.7729 ± 0.7570	0.0684
Cis-11,14,17-eicosatrienoic C20:3n3	0.0132 ± 0.0157	0.0018	0.0157 ± 0.0165	0.0026
Cis-5,8,11,14,17-eicosapentaenoic C20:5n3	0.0326 ± 0.0320	0.0034	0.0372 ± 0.0385	0.0055
Cis-4,7,10,13,16,19-docosahexaenoic C22:6n3	0.0326 ± 0.0297	0.0162	0.0422 ± 0.0364	0.0077
Docosapentaenoic C20:5n3	0.0471 ± 0.0320	0.0034	0.0596 ± 0.0599	0.0093

 $^{^{\}rm a,b}$ the mean values with same superscripts in the same parameter differ significantly $(P \leq 0.05)$

lower in the Cobb 500 hybrid cocks. Differences between the Cobb and Ross hybrids were recorded in the case of lauric, myristic and heptadecanoic acids ($P \le 0.01$) and in the case of stearic, palmitoleic and erucic acids ($P \le 0.05$). Differences were also measured in the case of eicosatrienoic, decoratetraenoic ($P \le 0.05$) and arachidonic ($P \le 0.01$) acids.

DISCUSSION

Unsaturated fatty acid 18:3 n-3 (linolenic acid) and 18:2 n-6 (linoleic acid) are classified as essential, meaning that the organism is unable to generate them and therefore they must be provided in the feed (Tvrznicka et al. 2011). These substances exert

 $^{^{\}rm A,B}$ the mean values with same superscripts in the same parameter differ significantly (P $\leq 0.01)$

SD = standard deviation

significant effects on many aspects of organismal health. They favourably affect prognosis in cardio-vascular diseases, are highly beneficial for the brain and quality of vision, and, in addition, strengthen immunity and help to cure eczema, acne and psoriasis.

Generally speaking, the human diet is FA n-3 deficient, which can contribute to degenerative diseases such as cardiovascular diseases, diabetes, arthritis, cancer and mental disorders (Bhalerao et al. 2014).

It has been demonstrated in animal experiments that deficiency in essential fatty acids causes growth retardation and increased transepidermal loss with the consequence of increased permeability of the skin and infertility in males and females. Experiments have shown an increased consumption of feed in animals with a negative nitrogen balance and a decrease in ATP production (Tvrznicka et al. 2011).

Poultry meat, with its low FA n-3 levels and higher FA n-6 levels, is an important component of the human diet (Bhalerao et al. 2014). This ratio can also be observed in our results. In the case of the Cobb hybrid, the sum of FA n-6 was 9.23 in hens, and 10.47 in cocks, while in the case of the Ross hybrid, the same values were 10.14 and 10.10, respectively. The values of FA n-3 were significantly lower. In the case of the Cobb hybrid, the sum of FA n-3 was 0.817 in hens, and 0.928 in cocks, while in the case of the Ross hybrid, the same values were 0.898 and 0.887, respectively. The recommended ratio of FA n-6:n-3 of 4:1, or lower (Simopoulos 1999) was far from being reached, ranging in the case of both hybrids around 11:1.

A large number of studies have discussed the possibility of modulating fatty acid composition in the body and muscle fat of poultry through diet (Kralik et al. 2004; Azman et al. 2005; Rymer and Givens 2005; Ortiz et al. 2006; Aldai et al. 2008; Zelenka et al. 2008 and others). It is therefore foreseeable that chicken meat might become an effective source of n-3 FA for the human diet, similarly to n-3 (omega-3) eggs (Van Elswyk 1997).

There are several problems associated with the commercial production of omega-3 chicken meat related to the source of fatty acids in the feed, cost of production, consumer acceptability and stability of the chicken meat that need to be tackled (Bhalerao et al. 2014).

Literary data concerning FA levels in the whole chicken body are scattered. One of the few exceptions is the work by Jakesova et al. (2014), in which FA levels in the whole body of pheasants was stud-

ied. Studies on the broiler hybrids used here have been completely missing.

In recent years, the genetic potential of broiler chickens has increased significantly, with higher yield leading to changes in nutritional needs as well as body composition (Anonymous 2012). Information about the levels of fatty acids in the whole body of broiler chickens at the time of slaughter with regard to sex and the currently used modern hybrids is largely missing. For example (Poureslami et al. 2010a) reported that sex has only a marginal effect on n-3 and n-6 PUFA metabolism and no effect on metabolism of SaFA and MUFA (Poureslami et al. 2010b). In marked contrast to these earlier data, the results of our trial document the existence of effects of sex on FA levels. In the case of the Cobb 500 hybrid the levels of all SaFA were higher ($P \le 0.05$; $P \le 0.01$) in cocks than in hens, and the same was true for FA n-6 and from the FA n-3 for α-linolenic and docosapentaenoic acids.

In addition to elucidating sex differences, our trial has also revealed that there are significant differences between the Cobb 500 and Ross 308 hybrids. Generally lower levels of the measured substances were found for Cobb 500 hens compared to Ross 308 hybrids. Comparisons of values measured in cocks of the Cobb 500 and Ross 308 hybrids showed generally higher levels of FA in cocks of the Cobb 500 hybrid.

These results suggest possible directions for future research focused on the development of broiler chicken hybrids "with a more favourable proportion of n-6 FA and n-3 FA" in fat and meat. When considering the levels of particular FA the gender of the chickens should also be taken into account.

REFERENCES

Aldai N, Dugan MER, Najera AI, Osoro K (2008): N-6 and n-3 fatty acids in different beef adipose tissues depending on the presence or absence of the gene responsible for double-muscling. Czech Journal of Animal Science 53, 515–522.

Anonymous (2012): Cobb 500 Broiler Performance and Nutrition Supplement. Available: http://www.cobb-vantress.com/docs/default-source/cobb-500-guides/cobb500-broiler-performance-nutrition-supplement-%28english%29.pdf (Accessed 28 July 2015).

Anonymous (2014a): Ross 308 Broiler: Nutrition Specification. Available: http://www.aviagen.com/assets/Tech_Center/

- Ross_Broiler/Ross308BroilerNutritionSpecs2014-EN.pdf (Accessed 28 July 2015).
- Anonymous (2014b): Ross 308 Broiler: Performance Objectives. Available: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-308-Broiler-PO-2014-EN.pdf (Accessed 28 July 2015).
- AOAC Association of Official Analytical Chemists (2003): Official methods of analysis of AOAC International, 17th edn. Association of Analytical Communities, Gaithersburg, MD, USA.
- Azman MA, Konar V, Seven R (2004): Effects of different dietary fat sources on growth performances and carcass fatty acid composition of broiler chickens. Revue de Medecine Veterinaire 155, 278–286.
- Azman A, Cerci IH, Birben N (2005): Effects of various dietary fat sources on performance and body fatty acid composition of broiler chickens. Turkish Journal of Veterinary and Animal Sciences 29, 811–819.
- Bhalerao S, Hegde M, Katare S, Kadam S (2014): Promotion of omega-3 chicken meat production: an Indian perspective. World's Poultry Science Journal 70, 365–373.
- Connor WE (2000): Importance of n-3 fatty acids in health and disease. American Journal of Clinical Nutrition 71, 171–175.
- De Smet S, Raes K, Demeyer D (2004): Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research 53, 81–98.
- Jakesova P, Zapletal D, Juzl R, Rusnikova L, Suchy P, Strakova E (2014): Effect of age on contents of fatty acids in whole bodies of pheasants throughout their growth. Acta Veterinaria Brno 83, 119–124.
- Kouba M, Mourot J (2011): A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochemie 93, 13–17.
- Kralik G, Ivankovic S, Bogut I, Csapo J (2004): Effect of dietary supplementation with PUFA n-3 on the lipid composition of chicken meat. Acta Alimentaria 33, 129–139.
- Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004): Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. American Journal of Clinical Nutrition 79, 935–945.
- Mataix J, Quiles JL, Rodriguez J (2001): Fat contribution: In: Food Guide for the Spanish Population (in Spanish). SENC, Madrid, Spain. 231–237.
- Mieczkowska A, Smulikowska S (2005): The influence of white lupin seeds in diets supplemented with fats of animal

- or plant origin on the fatty acid composition of broiler tissues. Journal of Animal and Feed Sciences 14, 93–107.
- Ortiz LT, Alzueta C, Rebole A, Rodriguez ML, Arija I, Brenes A (2006): Effect of dietary high-oleic acid and conventional sunflower seeds and their refined oils on fatty acid composition of adipose tissue and meat in broiler chickens. Journal of Animal and Feed Science 15, 83–95.
- Ozpinar H, Kahraman R, Abas I, Kutay HC, Eseceli H, Grashorn MA (2003): Effect of dietary fat source on n-3 fatty acid enrichment of broiler meat. Archiv fur Geflugelkunde 67, 57–64.
- Poureslami R, Raes K, Turchini GM, Huyghebaert G, De Smet S (2010a): Effect of diet, sex and age on fatty acid metabolism in broiler chickens: n-3 and n-6 PUFA. British Journal of Nutrition 104, 189–197.
- Poureslami R, Turchini GM, Raes K, Huyghebaert G, De Smet S (2010b): Effect of diet, sex and age on fatty acid metabolism in broiler chickens: SFA and MUFA. British Journal of Nutrition 104, 204–213.
- Rymer C, Givens DI (2005): n-3 fatty acid enrichment of edible tissue of poultry: A review. Lipids 40, 121–130.
- Selehifar E, Shivazad M, Foroudi F, Chamani M, Kashani RB (2012): Reevaluation of digestible amino acid requirements of male and female broilers based on different ideal amino acids rations in starter period. Livestock Science 147, 154–158.
- Simopoulos AP (1999): Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition 70, 560–569.
- Tvrznicka E, Kremmyda S, Stankova B, Zak A (2011): Fatty acids as biocompounds: Their role in human metabolism, health and disease a review. Part 1: Classification, dietary sources and biological functions. Biomedical Papers155, 117–130.
- Van Elswyk ME (1997): Comparison of n-3 fatty acid sources in laying hen rations for improvement of whole egg nutritional quality: A review. British Journal of Nutrition 78, 61–69.
- Zelenka J, Schneiderova D, Mrkvicova E, Dolezal P (2008): The effect of dietary linseed oils with different fatty acid pattern on the content of fatty acids in chicken meat. Veterinarni Medicina 53, 77–85.

Received: 2016–02–10 Accepted after corrections: 2016–06–03

Corresponding Author:

Prof. Ing. Eva Strakova, Ph.D., University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Nutrition, Palackeho 1–3, 612 42 Brno, Czech Republic E-mail: strakovae@vfu.cz