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Abstract: Autism spectrum disorder (ASD) is a group of human neurodevelopmental disorders with significant
global prevalence. Deficits in social communication and interaction and repetitive, stereotyped patterns of behav-
iour characterise ASD. The aetiology of ASD is unclear, but several genetic and environmental risk factors, either
alone or in combination, are implicated in its development. To date, the underlying pathogenic mechanisms of ASD
remain incompletely understood due to its heterogeneity. To better understand the pathogenesis of ASD, various
animal models have been developed. The use of animals in ASD research allows the exploration of the biological
substrates of social behaviour, cognition, and reward sensitivity, which are key components of ASD symptoms.
This review outlines the commonly employed animal models in ASD research and explores their applications and
the associated challenges.
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INTRODUCTION

At present, “autism spectrum disorders” (ASD)
is an umbrella term used to describe a clinically
heterogeneous group of human neurodevelopmen-
tal disorders characterised by deficits in social in-
teraction, verbal and non-verbal communication
difficulties, restrictive and repetitive stereotypic
behavioural patterns, and narrow interests (Patel
et al. 2018; Li et al. 2021; Sauer et al. 2021). ASD
is one of the most disabling developmental disor-
ders (Talantseva et al. 2023) with significant global
prevalence. It affects approximately 0.6—1% of the

worldwide population (Salari et al. 2022; Andersen-
Civil et al. 2023). Nevertheless, practical methods
for diagnosing and treating ASD remain insuf-
ficient, primarily because of the significant het-
erogeneity of the disorder. ASD presents not only
a medical challenge for individuals but also a press-
ing social concern, placing substantial mental and
financial strain on families and society as a whole
(Manoli and State 2021). Thus, comprehensive
studies on the pathophysiology of ASD are essential
for providing theoretical and experimental founda-
tions to advance new clinical diagnostic, treatment,
and intervention strategies (Li et al. 2021).
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Considering the challenges in obtaining sam-
ples from ASD patients, experimental models that
replicate the clinical features of ASD are the best
choice for exploring the pathogenesis of the dis-
order (Erdogan et al. 2017; Wintler et al. 2020;
Li et al. 2021). To date, numerous animal models
for ASD have been developed, each possessing dis-
tinct advantages and disadvantages. In this review,
we discuss the applications of standard ASD animal
models. The latter can be divided into three major
groups: 1) Genetic animal models associated with
the study of the disease in genetically modified ani-
mals; 2) Structural injury-induced animal models
based on the destruction of areas in the central
nervous system; and 3) Environmental-induced
animal models — animal models in which chemical
influences or biological manoeuvre are applied dur-
ing early development (ontogenesis) (Lavrov and
Shabanov 2018; Li et al. 2021; Ornoy et al. 2024).

GENETIC ANIMAL MODELS FOR ASD

Genetic research has identified numerous genes
associated with ASD, with over 900 genes linked
to the disorder (Miles 2011; Pensado-Lopez et al.
2020). Understanding the pathogenesis of ASD in-
volves detecting copy number variations and point
mutations, as well as identifying rare variants in syn-
aptic cell adhesion proteins and their associated
pathways. These genetic pathways can be experi-
mentally modelled. However, the complex genetic
framework of ASD, including genomic abnormali-
ties, de novo mutations, and prevalent genetic vari-
ants, makes translating genetic risk into biological
mechanisms a challenge (Erdogan et al. 2017).

Rodent models have historically been the preferred
choice for studying the genetic alterations present
in neurodevelopmental and neurodegenerative hu-
man diseases, including ASD. Additionally, multi-
ple mouse strains exhibiting ASD-like behaviours
were used to identify factors behind ASD, making
mice also the preferred model. Subsequently, the
development of rat knockout models marked a sig-
nificant advancement (Ornoy et al. 2024). Initial
knockout rat models included those associated
with ASD resulting from both genetic syndromes
caused by mutations in a single gene and nonsyn-
dromic mutations. Examples of syndromic models
are those associated with a mutation in the fragile
X messenger ribonucleoprotein 1, FMR1 gene, and
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the methyl CpG binding protein 2, MECP2 gene,
as well as nonsyndromic models linked to muta-
tions in the neuroligin 3 (NLGN3) and neurexin 1
(NRXN1) genes (Pietri et al. 2013; Schepici et al.
2019; Pensado-Lopez et al. 2020; Zhu et al. 2023).
Although rodent models have been commonly used
to study human genetic disorders, significant evo-
lutionary differences, such as brain anatomy, cogni-
tive abilities, and behaviour, raise questions about
their translational potential (Zhao et al. 2018).
Currently, apart from rodent genetic models, ze-
brafish and nonhuman primates, such as cynomol-
gus monkey models, are emerging as a significant
supplementary model in translational neuroscience
(Pietri et al. 2013; Liu et al. 2016; Schepici et al.
2019; Kedra et al. 2020; Pensado-Lopez et al. 2020;
Lietal. 2021; Zhu et al. 2023). Transgenic monkey
models offer improved face and constant validity
for evaluating ASD-like phenotypes, as they are
more closely related to humans than rodent or ze-
brafish models (Li et al. 2021). However, cost, the
slow reproductive cycle of macaques, and limited
phenotype tools hinder the use of these animals
in experiments. Additionally, ethical concerns and
non-genetic factors, such as diet, environment,
and socioeconomic status, further complicate re-
search outcomes (Zhao et al. 2018).

Among genetic syndromes associated with ASD,
the more prevalent conditions include fragile X
syndrome, caused by a mutation in the FMRI gene
(Miles 2011; Pensado-Lopez et al. 2020); Rett syn-
drome, linked to mutations in the MECP2 gene;
Tuberous sclerosis, associated with mutations
in TSCI or TSC2; and Timothy syndrome, which
arises from a mutation in the CACNAIC gene
(Ergaz et al. 2016). Fragile X syndrome is consid-
ered the most prevalent inherited form of ASD
(Miles 2011; Pensado-Lopez et al. 2020). Although
these syndromes are primarily recognised as hu-
man diseases, they are not exclusive to humans
in terms of research models. The majority of these
models exhibit an ASD phenotype that closely mir-
rors the clinical features observed in human pa-
tients with ASD (Li et al. 2021; Ornoy et al. 2024).

Examples of animal models of syndromic disor-
ders predisposing to ASD among humans are sum-
marised in Table 1.

Thus, Fmrl-mutant mice show difficulties with
social interactions, repetitive and stereotypic be-
haviours, and reduced anxiety, hyperactivity, and
seizures (Zang et al. 2009; Oddi et al. 2015). In Fmr1-
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Table 1. Examples of animal models of syndromic disorders predisposing to ASD among humans
Human svndrome Gene mutation Animal Behavioural ASD features Stud
Y (human) model modelled Y
Z L
mice impaired social communication, repetitive E(l;gozt;
Fragile X syndrome FMRI ’ and restricted behaviours, reduced anxiety L
Fmrl =/= levels, hyperactivity, and seizures Oddi et al.
P ¥ (2015)
impaired social communication,
. rats, repetitive and restricted behaviours, Hamilton et al.
Fragile X syndrome FMRI Fmrl —/- and intact fear responses, along with (2014)
normal sensorimotor gating
‘ sebrafish, ar}x1ety—hke bel.1a’v1‘0urs, hyReract1v1ty, ?md Zhu et al.
Fragile X syndrome FMRI heightened sensitivity to auditory and visual
Fmrl —/- . . (2023)
stimuli
Rett svndrome MECP2 mice, decreased anxiety, narrow interests, dimin- ~ Samaco et al.
Y Mecp2 +/- ished pain sensitivity, and normal olfaction. (2013)
. impaired social communication, increased
Rett syndrome MECP2 fmice, rooming, enhanced anxiety and/or depres Luetal
Y Mecp2 methylation & & Y P (2020)
sion, and poor performance in memory tasks
rats, defects in social interaction, poor memory;, Wu et al.
Rett syndrome MECP2 Mecp2 —/- and task performance (2016)
zebrafish, . . . Pietri et al.
Rett syndrome MECP2 ymecp2 —|— behavioural impairments (2013)
repetitive circular locomotion, increased
cynomolgus monkeys, stress responses, diminished social engage- Liuetal.
Rett syndrome MECP2 MeCP2 ment, and mild improvements in cognitive (2016)
abilities
Tuberous sclerosis TSCL mice, impaired social interactions Sato et al.
TSC2 Tscl +/- and Tsc2 +/— P (2012)
. zebrafish, . . . . Kedra et al.
Tuberous sclerosis TSCI1, TSC2 fsc2 MWAI2 seizures, anxiety-like behaviour (2020)
mice,
. Ts2, impaired social communication, repetitive Bader et al.
T h 'ACNA1
imothy syndrome CACNAIC G406 mutation in the  and restricted behaviours, increased fear (2011)
CaV1.2L-ty
mice, Horigane et al
Timothy syndrome CACNAIC G406R mutation behavioural impairments 8 '

in L-type Ca® channels

(2020)

ASD = autism spectrum disorder

knockout rat models, impaired social interactions
and repetitive behaviours were also observed, but
there was no effect on fear responses or sensorimo-
tor gating (Hamilton et al. 2014). In zebrafish, mu-
tations in the fimr1 result in anxiety-like behaviours,
hyperactivity, and heightened sensitivity to audi-
tory and visual stimuli (Zhu et al. 2023).

Mouse models with Mecp2 mutations replicate
the key symptoms of Rett syndrome observed
in humans (Li et al. 2021). According to multi-
ple research studies, Mecp2-knockout mice tend
to develop normally for a month, after which they
show hypoactivity, seizures, repetitive movements,
and social deficits (Samaco et al. 2013; Erdogan
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et al. 2017; Lu et al. 2020; Li et al. 2021). Rats af-
fected by the Mecp2 mutation also show ASD-like
impairments, such as defects in social interaction
and poor performance in memory tasks (Wu et al.
2016). Interestingly, non-traditional ASD models
such as zebrafish and monkeys with the mecp2/
MeCp2 gene mutation also show ASD-like behav-
ioural impairments (Pietri et al. 2013; Li et al. 2021).
Liu et al. (2016) reported that MeCP2 transgenic
cynomolgus monkeys over-expressing human
MECP2 in the brain display an increased tenden-
cy for repetitive circular movements, heightened
stress responses, diminished social engagement,
and mild impairments of cognitive abilities.

In mouse models with Tscl or Tsc2 mutations,
animals display ASD-like behaviours, such as im-
paired social interactions and altered vocalisations
(Sato et al. 2012; Li et al. 2021), while zebrafish
models exhibit seizures and anxiety-like behaviours
(Kedra et al. 2020).

Many mouse models have been developed with
a high degree of face validity for the behavioural
signs associated with Timothy syndrome. Timothy
syndrome mouse mutants show ASD-like features
such as impaired social interactions (Bader et al.
2011; Horigane et al. 2020), repetitive and stereotyp-
ic behaviours, and increased fear (Bader et al. 2011).

Additionally, many ASD-associated genes regu-
late synaptic adhesion, disrupting the balance be-
tween excitatory and inhibitory control in neural
pathways. Synaptic cell adhesion molecules such
as neurexins, neuroligins, and contactins are essen-
tial for synapse formation and function. Neuroligins
(NLGNSs), a large group of transmembrane proteins,
are found on the postsynaptic membrane of gluta-
matergic or GABAergic synapses. The NLGN gene
family comprises five distinct human genes, with
neuroligin 4 X-linked (NLGN4X) and NLGN3 mu-
tations linked to ASD (Onay et al. 2017). These
mutations produce altered proteins that reduce cell
surface binding to Neurexin (NRXN), forming the
basis for animal models. Neurexins, primarily pr-
esynaptic transmembrane proteins, are encoded
by three genes (NRXN1, NRXN2, and NRXN3)
and form complexes with neuroligins. According
to studies by Ishizuka and colleagues (Ishizuka et al.
2020) and Onay and colleagues, NRXN1 gene muta-
tions may be pathogenetically associated with ASD
(Onay et al. 2017). Glycosylphosphatidylinositol-
anchored immunoglobulin proteins like Contactin
4 are involved in myelination, synapse formation,
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and plasticity, with disruptions linked to ASD.
Genes for scaffolding proteins such as SHANK
(SHANK1-3) are also crucial for synaptic function;
SHANK3 mutations have been linked to ASD, result-
ing in specific behavioural phenotypes in mutant
mice (Erdogan et al. 2017). Studies on Shank3-
deficient mice suggest that Shank3 deficiency may
lead to abnormalities in gamma-aminobutyric aci-
dergic neurons (GABAergic neurons), impairing
the GABAergic neurotransmission, which is patho-
genetically linked to ASD (Bacova et al. 2025).

ANIMAL MODELS OF STRUCTURAL
BRAIN INJURY IN ASD

Similar to autistic individuals, animals with al-
terations in specific brain regions exhibit ASD-like
behaviour (Erdogan et al. 2017), as these alterations
can affect various areas involved in speech pro-
duction, comprehension, and sensory processing,
thereby contributing to the diverse clinical features
observed in ASD (Khadem-Reza and Zare 2022).
Decades of research have identified key hallmarks
of ASD and crucial brain regions involved, par-
ticularly those in the “social brain”, including the
prefrontal cortex, amygdala, hippocampus, limbic
system, and dopaminergic pathways. Additionally,
increasing evidence also points to the cerebellum’s
role in cognitive and social functions, highlighting
its involvement in ASD, though the extent of this
role is still unclear (Mapelli et al. 2022).

Traditional anatomical lesion models have helped
identify brain regions involved in neurological dis-
orders. However, such models fail to accurately
replicate ASD due to the complexity of human de-
velopment and the diversity of ASD phenotypes,
which likely involve multiple neural circuits and
brain regions (Kim et al. 2016).

ANIMAL MODELS OF AMYGDALA
FUNCTIONAL AND ANATOMICAL
CHANGES IN ASD

Due to the significant involvement of the amygda-
la and other limbic structures in social interactions,
these brain areas have emerged as key focuses for
ASD research (Seguin et al. 2021).

Amygdala dysfunction and structural altera-
tions in early life are linked to autistic behav-
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iours (Bachevalier 1994). Kemper and Bauman
report that autistic children have enlarged
amygdala with decreased neuron size in this re-
gion of the brain (Kemper and Bauman 1998).
According to Schumann et al,, autistic subjects have
been found to exhibit structural alterations in the
amygdala, including a decrease in neuron density
and changes in volume (Schumann et al. 2004;
Schumann and Amaral 2006). In particular, the size
of the amygdala changes with age (Schumann et al.
2004). More recent studies have demonstrated a sig-
nificant reduction in the number of neurons within
the lateral nucleus of the amygdala in individuals with
autism (Varghese et al. 2017). According to a study
conducted by Seguin et al. (2021), adolescents with
ASD exhibit enlarged basolateral amygdala nuclei
when compared to their typically developing coun-
terparts. Increased volumes of basolateral amygdala
and cortical nuclei correlate positively with social
behaviour deficits. The basolateral amygdala, a key
brain region in emotion and motivational process-
ing, relies on inhibitory GABAergic neurons for
regulation. Disrupted GABAergic inhibition can
result from the loss of GABAergic interneurons, al-
tered GABA receptor function, or modulatory dys-
function. Disruptions in GABAergic control of the
basolateral amygdala occur during development,
aging, or after trauma, leading to hyperexcitabil-
ity. This manifests as increased anxiety, emotional
dysregulation, or seizures - behavioural alterations
associated with ASD (Prager et al. 2016).

Conversely, larger volumes of the medial nuclei are
negatively correlated with both social and communi-
cation deficits. Additionally, larger volumes of cen-
tral amygdala nuclei are associated with heightened
repetitive behaviours (Seguin et al. 2021).

Animal studies confirm that GABAergic in-
terneurons in the basolateral amygdala are crucial
for ASD-related behaviour (Prager et al. 2016). Rats
are the most widely used animal models for evaluat-
ing the role of the amygdala in behaviours associat-
ed with autism. Rat amygdala damage models have
shown behaviours such as stereotyped walking,
impaired social play (Wolterink et al. 2001), and
difficulties in social communication (Diergaarde
et al. 2005). Furthermore, according to Paine et al.
(2017), a reduction in GABA function within the
basolateral amygdala is pathogenically linked to im-
paired social interaction.

Research using environmental ASD models
and Fragile X knockout mice reveals impaired

GABAergic signalling in the basolateral amygdala.
This reduced inhibition arises from synaptic trans-
mission deficits and disrupted GABA metabolism,
but not from interneuron loss (Prager et al. 2016).

Notably, studies by Wang and colleagues on mice
(Wang et al. 2018) revealed that nearly all neu-
ronal nitric oxide synthase (nNOS)-positive cells
in the basolateral amygdala are GABAergic in-
hibitory interneurons and that there was a reduc-
tion in nNOS-expressing cells in the basolateral
amygdala of mouse models of autism (Wang et al.
2018). Thus, disruptions in the basolateral amyg-
dala, caused by a reduction in nNOS interneurons
and their synaptic connectivity, may contribute
to the socio-emotional behavioural impairments
observed in ASD (Wang et al. 2018).

Interestingly, studies on non-human primates
show that the behavioural abnormalities in amyg-
dala-lesioned animals align more closely with
deficits in fear processing than with disruptions
in social communication (Amaral et al. 2003). The
findings of these authors suggest that infant rhesus
monkeys raised by their mothers, even with selec-
tive bilateral lesions to the amygdala, exhibit a full
range of species-typical social signals, including fa-
cial expressions, vocalisations, and body postures.
Furthermore, throughout the first year of develop-
ment, no signals of diminished emotional expres-
sion, motor stereotypes, or lack of social skills were
observed (Amaral et al. 2003).

ANIMAL MODELS OF ANATOMICAL
ABNORMALITIES IN THE PREFRONTAL
CORTEX IN ASD

The prefrontal cortex plays a crucial role in mam-
malian social behaviour, encompassing motivation,
recognition, and decision-making. In humans, the
medial prefrontal cortex plays a crucial role in com-
plex social interactions, including self-awareness,
understanding others’ perspectives, and emotion
regulation. However, impaired prefrontal cortex
function has been linked to several neuropsychi-
atric conditions, including ASD (Mohapatra and
Wagner 2023).

A study conducted by Herbert and colleagues
in 2004 investigated cerebral white matter vol-
ume in boys with autism, revealing an increase
in the volume of “superficial” white matter, lo-
cated directly beneath the cortex (Herbert et al.
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2004). Additionally, Carper et al. (2002) reported
that the frontal lobe exhibited the most signifi-
cant magnitude of enlargement. In 2005, Carper
and Courchesne found that a substantial portion
of the frontal cortex undergoes enlargement dur-
ing the early stage of autism. Notably, regions such
as the orbital cortex and precentral gyrus show dis-
tinct variations in developmental anomalies, differ-
ing in magnitude or temporal progression (Carper
and Courchesne 2005). Furthermore, early struc-
tural damage in the prefrontal cortex impairs social
communication and cognition (Eslinger et al. 2004).

The prefrontal cortex evolved in stages. Agranular
areas emerged first in early mammals and were
shared among rodents and primates, including
limbic regions like the agranular medial frontal
cortex. Rodent studies provide insights into these
shared areas, but less for primate-specific granu-
lar regions that dominate the human frontal lobe.
These granular regions developed in early primates
or their ancestors, including tree shrews, and fur-
ther evolved in strepsirrhines and simians (apes,
humans) (Preuss and Wise 2022).

Animal models provide evidence supporting the
role of the human prefrontal cortex in social moti-
vation (Mohapatra and Wagner 2023). According
to Schneider and Koch (2005), damage to rats’
neonatal medial prefrontal cortex reduces social
play, conditioned place preference linked to so-
cial contacts, and social grooming. In contrast,
similar lesions in adult rats do not significantly
affect social behaviour. Such findings suggest that
prefrontal cortex anatomical abnormalities in ASD
arise at an early stage of development.

Non-human primates (Macaca fascicularis and
Macaca mulatta) are preferred models for ASD
research due to their anatomical similarities with
humans compared to rodents. Bussey et al. (2001)
trained rhesus monkeys to establish new visuomo-
tor connections during a single session. Following
the bilateral removal of the orbital and ventral pre-
frontal cortex, the monkeys struggled to learn these
associations within a single session that parallels
aspects of ASD (Bussey et al. 2001). Similarly, Dias
et al. (1996) noted in a letter to the Nature Journal
that damage to the lateral prefrontal cortex in mon-
keys resulted in impaired inhibitory control over
attentional selection. Conversely, damage to the or-
bitofrontal cortex led to a loss of control over affec-
tive processing, making it difficult for the monkeys
to adjust their behaviour in response to changes
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in the emotional significance of stimuli (Dias
et al. 1996). Ethical concerns dictate that research
on monkeys should only occur under extraordinary
conditions, thereby limiting the utilisation of mon-
key experimental models.

CEREBELLAR ANATOMICAL
ABNORMALITIES MODELS

Substantial evidence now suggests that the cer-
ebellum is involved in a range of cognitive and
emotional functions, including language, attention,
fear, and pleasure responses (Mapelli et al. 2022).
Cerebellar anatomical abnormalities are commonly
observed in individuals with autism, highlight-
ing the cerebellum’s role in the aetiopathogenesis
of ASD (Bauman and Kemper 1985; Mapelli et al.
2022). A post-mortem human study by Bailey and
colleagues found that ASD is associated with re-
duced size and number of Purkinje cells (Bailey
et al. 1998). This finding aligns with data reported
by Fatemi and colleagues, who noted that approxi-
mately 25% of individuals with ASD exhibit a re-
duction in Purkinje cell size (Fatemi et al. 2002).
Moreover, growing evidence suggests that most
individuals with ASD also exhibit motor impair-
ments. In their original study, Freitag et al. (2007)
observed that gross and fine motor impairments are
associated with the severity of autistic symptoms,
suggesting potential common pathogenetic mecha-
nisms. In their comprehensive review, Fatemi et al.
(2012) highlighted various cerebellar abnormalities
in autistic patients, including structural alterations,
inflammation, oxidative stress, altered neurotrans-
mitter and protein levels, as well as motor and cog-
nitive impairments related to the cerebellum.

In animal models for ASD with cerebellar abnor-
malities, mice are the most commonly used models
for studying ASD due to their genetic manipulability,
85% similarity to human protein-coding genes, rapid
reproduction cycle, and cost-effectiveness. Validated
assays are employed to evaluate ASD-like pheno-
types, and research on gene-targeted mouse models
has enhanced our understanding of the pathogenic
mechanisms underlying ASD. Monogenic models
with cerebellar alterations can be categorised into
syndromic, non-syndromic, and abnormal cerebel-
lar development models (Mapelli et al. 2022).

Several genes crucial for the normal development
of the cerebellum have been pathogenically linked
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to ASD. Notable examples include the engrailed
homeobox 2 (EN2) gene, which plays a specific role
inregulating the development of the mesencephalon
and cerebellum, and the phosphatase and tensin ho-
molog (PTEN) gene, an oncogene-suppressor gene
involved in cell cycle control, apoptosis, and migra-
tion signalling (Mapelli et al. 2022). Interestingly,
both EN2 knockout mice (EN2-KO) and individuals
with ASD display striking similarities in cerebellar
morphological alterations, such as disrupted folia-
tion patterning, hypoplasia, and a decreased num-
ber of Purkinje cells (Millen et al. 1994; Kuemerle
etal. 1997). EN2-KO mice exhibit behaviours remi-
niscent of ASD, characterised by reduced socia-
bility, impaired spatial memory, and heightened
susceptibility to seizures (Provenzano et al. 2014).
With specific deletion of PTEN in Purkinje cells
(Purkinje cell PTEN-KO), these neurons have al-
tered morphology and reduced number (Cupolillo
et al. 2016). Moreover, loss of PTEN in Purkinje
cells leads to the development of ASD-like traits
in mice, including impaired social communication,
repetitive behaviour, and increased susceptibility
to seizures (Cupolillo et al. 2016).

Additionally, genes such as SHANKI-3 have been
recently implicated in the pathogenesis of non-
syndromic ASD (Mapelli et al. 2022). Notably,
autistic subjects show SHANK3 disruptions, of-
ten with a co-deletion of the Islet-Brain-2 (/B2)
gene (Giza et al. 2010; Mapelli et al. 2022). Multiple
SHANK3 mutant mouse models for ASD have
been developed, each with some construct valid-

ity. However, only one model accurately replicates
a human SHANK3 mutation- a model with a muta-
tion that leads to a truncated SHANKS3 protein lack-
ing the C-terminal region (SHANK3-AC) (Mapelli
et al. 2022). SHANK3-AC mice display social and
behavioural abnormalities, novelty avoidance,
and cerebellar alterations, including impaired mo-
tor coordination and altered density and morpholo-
gy of the Purkinje cells (Kouser et al. 2013; Duffney
et al. 2015; Kloth et al. 2015). IB2-KO mice also ex-
hibit altered Purkinje cell morphology and typical
ASD-like features, such as impaired social commu-
nication, motor deficits, and reduced exploratory
behaviour (Giza et al. 2010). For a more in-depth
review of cerebellar abnormalities in mouse models
for ASD, refer to the recent comprehensive review
by Mapelli et al. (2022).

Examples of non-syndromic and abnormal cer-
ebellar development mouse models for ASD are
summarised in Table 2.

In rodent ASD models, early cerebellar lesions
cause visuomotor defects (Joyal et al. 1996), in-
crease spontaneous motor activity, and reduce
anxiety-like behaviour (Bobee et al. 2000).

ENVIRONMENT-INDUCED ANIMAL
MODELS FOR ASD

Environmental factors, whether alone or in com-
bination with genetic influences, play a significant
role in the development of ASD (Cheroni et al. 2020).

Table 2. Examples of anatomical cerebellar abnormalities in mouse models of ASD

Cerebellum

Mouse model o
abnormalities

ASD features

modelled Study

foliation hypoplasia, decreased

EN2-KO number of Purkinje cells

Purkinje cell

PTEN-KO number of Purkinje cells
SHANK3-AC decr.eased Purl(lnje.c?ll ngmber
with fewer dendritic spines
altered Purkinje cell morphology:
IB2-KO

Purkinje cell dendritic arbour

altered morphology and decreased

thinner Purkinje cell dendrites, shorter motor deficits, reduced explor-

Millen et al. (1994);
Kuemerle et al. (1997);
Provenzano et al. (2014)

abnormal social behaviour,
impaired spatial memory,
susceptibility to seizures

impaired social communication,
repetitive behaviour, susceptibil-
ity to seizures

Cupolillo et al. (2016)

Kouser et al. (2013);
Kloth et al. (2015);
Duffney et al. (2015)

impaired social communication,
repetitive behaviour,
novelty avoidance

impaired social communication,
Giza et al. (2010)
atory behaviour

ASD = autism spectrum disorder
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Experimental animal models that mimic environ-
ment-induced factors associated with ASD provide
valuable insights into the pathogenic mechanisms
underlying the disorder. These models are sim-
ple, quick to develop, and cost-effective (Li et al.
2021). Nonetheless, each animal model captures
only a limited number of aspects related to the po-
tential pathogenic mechanisms of ASD (Li et al.
2021). Environmental factors in ASD include ma-
ternal infection and prenatal exposure to chemi-
cals such as valproic acid (Kim et al. 2016; Lavrov
and Shabanov 2018), polychlorinated biphenyls
(Jolous-Jamshidi et al. 2010), insecticides, of which
the most common is chlorpyrifos (Lan et al. 2017),
propionic acid, bisphenol propane and sevoflurane
(Lietal. 2021), etc. Hence, environmental-induced
animal models of ASD can be divided into chemical
animal models (i.e., drug-induced models or chem-
ical models) and non-chemical animal models (i.e.,
immune system modulation models, maternal im-
mune activation models, or models involving other
biological manipulations) (Ergaz et al. 2016; Ornoy
et al. 2024).

CHEMICAL ANIMAL MODELS FOR
ASD - EXPOSURE TO VALPROIC ACID

Several studies have demonstrated that admin-
istering valproic acid during gestation for epilepsy
treatment can induce symptoms resembling autism
(Kim et al. 2016). Animal models using valproate
have successfully reproduced ASD-like behaviours,
offering a platform to investigate the neurobiologi-
cal changes associated with this environmental fac-
tor (Patterson 2011).

The valproic acid model was created by Rodier
et al. in 1996 (Rodier et al. 1996).

In line with symptoms seen in humans with au-
tism, rodents (rats and mice) and zebrafish exposed
prenatally to valproic acid exhibit increased repeti-
tive and stereotypical behaviours (Schneider et al.
2008; Chen et al. 2018), communication deficits,
and reduced interest in social novelty (Kim et al.
2016; Chen et al. 2018; Hirsch et al. 2020; Messina
et al. 2024).

Hirsh and colleagues, using a rat model of au-
tism induced by valproic acid exposure, reported
typical ASD-like features in animals, such as im-
paired social communication, heightened anxiety,
and lower sensitivity to pain (Hirsch et al. 2020).

234

https://doi.org/10.17221/87/2024-VETMED

Additionally, Schneider et al. (2008) previously
described gender differences in a rat model of au-
tism induced by prenatal exposure to valproic acid:
male offspring displayed a plethora of ASD-like fea-
tures, including lower sensitivity to pain, repetitive/
stereotypic-like behaviour, increased anxiety, and
impaired social communication, whereas female
pups exhibited mainly increased repetitive/stere-
otypic-like behaviour. While the precise mecha-
nism by which prenatal exposure to valproic acid
induces autism-like behaviours in both humans and
rodents remains unclear, the rat model has been
extensively validated and shows significant paral-
lels with the behavioural, cellular, and molecular
changes seen in individuals with autism (Nicolini
and Fahnestock 2018).

In a mouse model for ASD, Ornoy et al. (2019)
reported that pups treated with valproic acid also
displayed neurobehavioural deficits, with more
pronounced effects in males. In particular, male
pups have shown impaired social communication
and enhanced grooming activity, while female pups
exhibited heightened anxiety.

Studies on zebrafish have shown that exposure
to valproic acid leads to ASD-like phenotypes, in-
cluding macrocephaly, hyperreactive movement,
and altered social behaviours (Chen et al. 2018;
Messina et al. 2024). Examples of valproic acid-
induced ASD-like behavioural animal models are
summarised in Table 3.

NON-CHEMICAL ANIMAL MODELS
FOR ASD - MATERNAL INFECTION/
MATERNAL IMMUNE ACTIVATION

Studies have shown that maternal infections dur-
ing pregnancy can increase the risk of neurode-
velopmental disorders such as ASD in offspring.
Activation of the maternal immune system by the
inflammation process is considered a potential risk
factor for abnormal brain development, potentially
resulting in ASD development (Patterson 2011;
Ornoy et al. 2024). Although the microbial patho-
gens or immune activators encountered in humans
may vary from those studied in animal models, the
autism-like effects observed in these models offer
valuable insights into the underlying pathophysiol-
ogy of ASD in humans.

Animal models replicating maternal infections
have demonstrated behavioural abnormalities
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Table 3. Examples of valproic acid-induced ASD-like behavioural animal models
Animal Valproic ;.1c1d dosing Behavioural ASD features Study
regimen modelled
male offspring: lower sensitivity to pain, repetitive/
Pregnant intraperitoneal injection stereotiyrg lca-ilijz Eg?g{f;;::ﬁ;eii:fiﬁnmety’ Schneider et al.
Wistar rats of 600 mg/kg on E12.5 P . . (2008)
female offspring: increased repetitive/
stereotypic-like activity
Pregnant intraperitoneal injection lower sensitivity to pain, impaired social Hirsch et al.
Wistar rats of 600 mg/kg on E12.5 communication, increased anxiety (2020)
ICR albino subcutaneous injection male p ugrslhlargg zirefos;ﬁiai czzrtxir‘rjiumcatlon, Ornoy et al.
mice of 300 mg/kg on PND4 st g activity (2019)
female pups: increased anxiety
exposure to concentrations . . . .
Zre:ll;rraf;ssh of 5, 50, 500, 1 000, and 1 500 (M deficient nslzc?;zi}tli;/elﬁ:r,igyferactwe Cfggleg)al.
¥ from 8 to 120 hpf v viou
Zebrafish 48 h exposure to 1 uM deficient social behaviour impaired social Messina et al.
embryos starting from 8 hpf visual laterality (2024)

ASD = autism spectrum disorder; E = embryonic day; hpf =

PND = postnatal day

similar to those observed in individuals with ASD,
highlighting the impact of prenatal environmen-
tal factors on neurodevelopment (Patterson 2011).
Rodents, particularly mice and rats, are commonly
used in experimental studies to investigate the ef-
fects of environmental factors on ASD-like behav-
iours (Hrabovska and Salyha 2016). Interestingly,
maternal immune activation during pregnancy
in rodents is associated with a dysregulated im-
mune system in the offspring and also leads to au-
tism-related phenotypes that persist into adulthood
(Patterson 2011; Bruce et al. 2023).

The most commonly used animal models for ma-
ternal infection in ASD research include the pre-
natal Borna Disease Virus (BDV) infection model
(Kim et al. 2016), prenatal lipopolysaccharide ex-
posure model (Ornoy et al. 2024), and polyinosinic-
polycytidylic acid (PolyIC) injection model (Kim
etal. 2016; Ornoy et al. 2024). Indeed, rats exposed
to prenatal BDV infection display stereotyped be-
haviour, reduced engagement in social play, and
impaired social interactions, indicating distinct
ASD-related phenotypes (Kim et al. 2016). Mice
prenatally exposed to lipopolysaccharide exhibit
more significant levels of anxiety (Wang et al. 2010)
and social communication deficits (Kim et al. 2016).
Similarly, offspring of rats injected with PolyIC,

hours post fertilisation; ICR = Institute of Cancer Research;

a double-stranded RNA that simulates maternal
infection, display autism-related phenotypes (Kim
et al. 2016).

Additionally, Bauman and colleagues reported
interesting results from a non-human primate
model (rhesus monkey) administered maternal
immunoglobulin G (IgG) class antibodies purified
from mothers of ASD children. An IgG-ASD off-
spring exhibited typical ASD-like behaviour, such
as inappropriate socialisation, which deviated from
species-typical social norms (Bauman et al. 2013).

Furthermore, genetic imbalances in synaptic con-
nectivity may make individuals more susceptible
to environmental disruptions during neurodevel-
opment, leading to altered neural networks and
autism-related behaviours. Research supports this
hypothesis by linking changes in synaptic con-
nectivity to autism-like behaviours. For example,
mutations in genes responsible for metabolising
xenobiotics have been associated with a higher risk
of ASD. Impaired detoxification of environmen-
tal chemicals can amplify the neurotoxic effects
of environmental pollutants (Bjorklund et al. 2021;
Keil-Stietz and Lein 2023). According to Balaguer-
Trias and colleagues, the gut microbiota is crucial
in neurodevelopmental processes (Balaguer-Trias
et al. 2022). In autistic children, distinct differences
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have been observed in their gut microbiota com-
pared to neurotypical children.

Additionally, toxicological studies highlight a re-
ciprocal relationship: the gut microbiota influences
how xenobiotics are metabolised, and conversely,
exposure to environmental chemicals can alter
the balance of the gut microbiota (Balaguer-Trias
et al. 2022; Keil-Stietz and Lein 2023). However,
it remains unclear how genetic and environmental
factors influence the risk of autism (Keil-Stietz and
Lein 2023).

Research on mice conducted by Hsiao and col-
leagues has demonstrated that the gut microbiota
can influence animal behaviour by modulating
neuroactive metabolites. This suggests a strong
connection between the gut-brain axis and the
development of the underlying pathophysi-
ological mechanisms of ASD (Hsiao et al. 2013).
Furthermore, after transplanting gut microbiota
from human donors with ASD into germ-free
mice, the results indicate that colonisation with
ASD-associated microbiota is sufficient to elicit
core autistic behaviours (Sharon et al. 2019). These
studies suggest that behavioural abnormalities may
arise from host genetics and microbial influences,
prompting a re-evaluation of neurological diseases.

ASSESSMENT OF CURRENT ANIMAL
MODELS AND THE DEVELOPMENT
OF NOVEL ANIMAL MODELS

FOR ASD

The effectiveness of an experimental animal model
is directly proportional to its ability to replicate hu-
man diseases accurately. At present, nearly all exist-
ing animal models for ASD replicate typical autistic
features, as they exhibit common clinical symptoms
such as stereotyped behaviours and impaired social
interactions. However, except for songbirds, none
of these experimental models effectively addresses
the linguistic deficits observed in autistic patients
(Lietal.2021). While an ideal therapeutic approach
for addressing impaired social communication
and repetitive behaviours in autistic subjects has
yet to be established, existing ASD animal models
demonstrate a certain degree of predictive validity
in evaluating treatment effectiveness (Li et al. 2021).

Moreover, due to the significant heterogeneity
of ASD, there is no consensus on the most suitable
animal model for studying its pathophysiological
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aspects. Identifying common underlying causes
across independent models presents a valuable op-
portunity to uncover novel factors pathogenically
linked to ASD.

Alongside the use of current ASD models,
it is essential to create new models that incorpo-
rate species with a closer evolutionary relationship
to humans. The tree shrew (Tupaia belangeri) has
been recognised as a promising alternative to non-
human primates in research due to its close evo-
lutionary ties to primates. Advancements, such
as genome sequencing, genetic manipulation, and
brain atlas creation, have enhanced experimen-
tal research capabilities (Yao et al. 2024). Tree
shrews possess a more developed nervous system
and stress response that closely resembles those
of humans, indicating their great potential as ef-
fective experimental models for studying diseases
with behavioural abnormalities. They outperform
rodents in cognitive tasks such as reverse and
reward-punishment anticipation (Ohl and Fuchs
1999). Tree shrews exhibit strong novelty pref-
erences akin to those observed in both rodents
and primates (Khani and Rainer 2012). Ni and
colleagues found that male tree shrews exhibited
social avoidance behaviour, while male mice dis-
played prosocial behaviour toward unfamiliar con-
specifics. This suggests that tree shrews could serve
as a novel animal model, distinct from mice, for in-
vestigating alterations in social behaviours (Ni et al.
2020). Tree shrews are employed in models of so-
cial frustration, learned helplessness, and chronic
mild stress models (Meng et al. 2016), positioning
them as key models for studying ASD pathophysiol-
ogy. However, the global scarcity of these animals
presents a significant challenge, along with the dif-
ficulty of identifying key research questions best
studied for this species (Yao et al. 2024).

Pigs (Sus scrofa domesticus) have also become es-
pecially significant in modelling human diseases,
particularly neurological disorders, due to their an-
atomical and physiological similarities to humans.
Notably, their brain structure and function closely
resemble those of humans, making them a promis-
ing model for investigating neurological conditions
in humans (Li et al. 2021; Yuan et al. 2024). In their
recent study, Yuan and colleagues explored using
a miniature Bama pig model to study ASD by expos-
ing embryos to valproic acid. These results showed
behavioural changes like abnormal gait, anxiety, im-
paired learning, and altered social behaviour, along
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with significant neuroanatomical changes similar
to those in ASD (Yuan et al. 2024). These results
position pigs as a transitional bridge between ro-
dent studies and primate-based research, offering
an ethical, clinically relevant model for probing
neurodevelopmental disorders such as ASD.

CONCLUSIONS

Suitable animal models of human diseases are
crucial for understanding their aetiopathogenic
aspects. While diseases with biological markers
have well-defined models, non-genetic models for
neurobehavioural and neuropsychiatric disorders
often lack these markers. As a result, autistic-like
behaviours in animals are challenging to define,
as specific neurobehavioural traits may not accu-
rately reflect human behaviour.

Until now, each animal model has primarily fo-
cused on a single genetic, neuronal, behavioural,
or other pattern rather than employing a compre-
hensive approach. The field has reached a point
where combining and further exploration of ani-
mal models are needed. Only a complex model
can enhance our understanding of the interac-
tions between the physiological and behavioural
features of ASD. Most animal models used in au-
tism research involve rodents, which are often
considered the most convenient species for this
purpose. However, behavioural results in mice can
sometimes conflict with human symptoms. These
discrepancies can largely be attributed to the labo-
ratory environment and the genetic background
of the transgenic rodents. Mammalian species,
particularly non-human primates, offer the best
opportunity to address specific pathophysiologi-
cal hypotheses due to their relatively high ana-
tomical and phylogenetic similarity to humans.
Nonetheless, ethical considerations necessitate
that experimental studies on non-human primates
be strictly limited to exceptional circumstances.
Currently, tree shrew models serve as an alternative
to non-human primate models; however, their lim-
ited global availability poses a significant challenge
in the field of research. Hence, when conducting
experimental studies on animals, each modality
should be examined separately to understand the
effects of each mechanism. Subsequently, more
complex models should be developed that integrate
all these properties.
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