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Abstract: Diarrhoea in newborn piglets represents a significant challenge to pig production. Controlled oral expo-
sure, also known as “feedback’, whereby sows are exposed at least two weeks before farrowing to pathogens that
cause health problems in piglets, is a traditional method of diarrhoea prevention. One type of feedback involves
fermenting cow’s milk with faeces from piglets suffering from diarrhoea and administering it to sows before far-
rowing. The bacterial composition of the faecal inoculum and fermented milk was compared in this study, and
the safety of administering the fermented milk to pregnant sows was evaluated. Using microbiota characterisation
by 16S rRNA gene sequencing, the genera Acetobacter, Lactobacillus and Lactococcus formed the core micro-
biota of the fermented milk. However, Clostridium perfringens accounted for up to 33% of the total microbiota
in some fermented milk samples. Interestingly, the drop in pH during the later stages of fermentation inactivated
C. perfringens and the samples were thus enriched for inactivated C. perfringens antigen. Our findings contribute
to a better understanding of the mode of action of fermented milk when used as a form of feedback.
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Diarrhoea in newborn piglets poses a substantial
challenge to the global swine industry, resulting
in significant economic losses through elevated
morbidity and mortality rates, diminished growth
performance, and escalating treatment costs
(Sjolund et al. 2014; Schulz and Tonsor 2015).
Neonatal piglet diarrhoea is a complex, multifacto-

rial disease developing from the interplay of infec-
tious agents, the host’s immunological competence,
and various environmental and management fac-
tors (Racewicz et al. 2021; Fabiano and da Silva
2023). Key pathogens include a variety of viruses
and bacteria, such as rotavirus, porcine epidem-
ic diarrhoea (PED) virus, Escherichia coli and
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Clostridium perfringens (Vidal et al. 2019; Jacobson
2022). These pathogens can induce severe damage
to the intestinal mucosa of piglets, leading to mal-
absorption, fluid and electrolyte imbalances, dehy-
dration, and, frequently, mortality (Bergeland and
Henry 1982).

Piglets are born agammaglobulinaemic, mean-
ing they lack circulating antibodies, and their gas-
trointestinal tract is initially sterile. The passive
immunity they acquire from the sow’s colostrum
is therefore indispensable for their protection
against early microbial threats (Rooke and Bland
2002; Le Dividich et al. 2005). Consequently, strat-
egies to enhance the sow’s immunity to relevant
pathogens are central to preventing neonatal di-
arrhoea (Krishna et al. 2020; Jacobson 2022). One
possible strategy is “controlled oral exposure’, also
known as "feedback”. This protocol has been used
in the swine industry for decades (Kohler 1974;
Schwartz et al. 2013) and involves the intentional
exposure of pregnant sows to farm-specific patho-
gens to elicit an immune response, thereby enhanc-
ing the transfer of specific antibodies to piglets
via colostrum and milk. This approach is particu-
larly valuable for diseases for which no effective
commercial vaccines are available (Arruda 2010).
Historically, feedback protocols involved adminis-
tering faeces from diarrhoeic piglets or the ground
intestines of dead piglets to sows (Arruda 2010;
Schwartz et al. 2013). While this method directly
exposes sows to the causative agents, including
viruses, it also presents the risk of uncontrolled
pathogen exposure (Arruda 2010). Another ap-
proach to feedback involves the formulation
of “cocktails’;, in which biological materials from di-
arrhoeic piglets are inoculated into a medium, such
as cow’s milk, before being fed to sows (Neumann
et al. 2020). This approach is expected to provide
a safer way to expose sows to bacterial pathogens.
Although fermented milk cocktails are sometimes
used in practice, there is insufficient literature
documenting their use. There are no studies ex-
amining the bacterial composition of fermented
cocktails in relation to the inoculum used - the
faeces of piglets with diarrhoea.

The objective of this study, therefore, was to anal-
yse the bacterial composition of fermented milk
used for sow feedback, to compare the bacterial
composition of the fermentate with the initial faecal
inoculum, and to assess the safety of its administra-
tion to pregnant sows.

MATERIAL AND METHODS
Faecal samples and milk fermentation

Pairs of faeces—fermented milk were obtained
from a pig farm where feedback in the form of fer-
mented milk inoculated with faeces from diarrhoea
affected piglets had been utilised for approximately
10 years. Following the routine preparation, the fae-
ces of diarrhoeic piglets were collected from vari-
ous pens, mixed and used to inoculate five litres
of commercially available longlife UHT cow’s milk.
The fermentation process was carried out in 5 litre
plastic bottles that were hermetically sealed and
maintained at a temperature of 37 °C for 24 hours.
A total of 16 pairs of faeces—fermented milk samples
were collected.

DNA isolation from stool and
fermented milk

DNA from faeces and fermented milk was iso-
lated using a QIAamp PowerFaecal Pro DNA Kit
(Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. For each sample, 250 mg
of stool or 250 pl of fermented milk sample was
combined with lysis buffer and mechanical dis-
ruption beads, then homogenised. The concentra-
tion of the extracted DNA was quantified using
a DeNovix DS11 FX spectrophotometer (DeNovix
Inc., Wilmington, USA).

Bacterial culture of Clostridium perfringens

C. perfringens was grown using Columbia blood
agar containing 5% sheep blood (Labmediaservis,
Jaromér, Czech Republic) under anaerobic con-
ditions (AnaeroGen; Oxoid, Basingstoke, UK).
Semiquantification of C. perfringens was evaluated
using a cross-scale (ranging from one cross for sparse
growth to five crosses for abundant growth). The
identity of selected colonies was confirmed using
the MALDI Biotyper (Bruker Microflex mass spec-
trometer equipped with MALDI Biotyper Compass
4.1.100.10 software, Database RUO v12.0, updated
version; Bruker, Billerica, MA, USA). To determine
potential toxin production and to characterise the
type of C. perfringens, toxin gene detection (cpa, cpb,
cpe, etx, iap, cpb2) was performed using PCR (Baums
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etal. 2004). To test the impact of pH on C. perfringens
growth, 100 ul of overnight cultures of three differ-
ent C. perfringens strains in Wilkins—Chalgren broth
(WCHB) (Thermo Scientific, Waltham, USA) were
inoculated into 900 pl of WCHB adjusted to pH 5.0,
4.6, 4.2 or 3.8 using lactic acid. The cultures were
then incubated under anaerobic conditions for 1, 3,
and 6 h, after which bacterial growth was determined
by plating serial dilutions on Columbia blood agar
and counting colonies after 24 h of anaerobic culture.

Microbiota composition determined
by 16S rRNA gene sequencing

Microbiota composition was analysed by se-
quencing the V3-V4 variable region of the
16S rRNA gene using an external service (Eurofins,
Luxembourg). The obtained raw data were pro-
cessed with QIIME 2 (Bolyen et al. 2019) using
built-in modules DADA2 (Callahan et al. 2016) for
trimming and denoising demultiplexed sequences;
taxonomic classification was performed using the
Greengenes 2 database, v2022.10 (McDonald et al.
2022); sequence diversity was evaluated with di-
versity core-metrix-phylogenetic and differential
abundance was analysed using the composition
ANCOMBC module (Lin and Peddada 2020).

The presence of alpha-toxin
in fermented milk

The presence of alpha-toxin, a potential prod-
uct of C. perfringens, in fermented milk was deter-
mined by the Monoscreen AgELISA Clostridium
perfringens alpha-toxin (BioX Diagnostics S.A.,
Rochefort, Belgium) according to the manufac-
turer’s instructions.

Statistical analysis

Significance of differences between samples was
evaluated using the Kruskal-Wallis test (richness
and evenness), PERMANOVA (beta diversity) and
Principal Coordinate Analysis (PCoA) within
QIIME 2 plugins. The Chisquared test was used
to analyse the correlation between the presence
or absence of two different bacterial taxa within
samples. P < 0.05 was considered significant.

12

https://doi.org/10.17221/83/2025-VETMED

RESULTS

Diversity of faecal and fermented
milk samples

Bacterial richness was significantly higher in fae-
cal samples than in fermented milk (Figure 1A).
Similarly, the evenness of bacterial species distribu-
tion was significantly higher in faecal than in fer-
mented milk samples (Figure 1B). Analysis of beta
diversity using PCoA also significantly separated
faecal samples from fermented milk, showing that,
despite using faecal samples as inoculum, specific
conditions present in milk considerably diverted
microbiota development during fermentation from
the original inoculum (Figure 1C).

Identification of bacterial species
in the faeces of piglets with diarrhoea
and in fermented milk samples

In total, 1235 amplicon sequence variants (ASVs)
were identified across all analysed samples. A sig-
nificantly higher abundance of lactic acid bacteria
was present in fermented milk samples (Figure 2)
than in faecal inoculum, but bacteria metabolising
polysaccharides were depleted in milk fermentates.
Genera Acetobacter and Lactococcus were identi-
fied nearly exclusively in fermented milk samples.
Different Lactobacillus species were found in both
milk fermentates and faeces.

The correlation of C. perfringens
with other bacteria

16S rRNA sequencing indicated that C. perfrin-
gens, a significant pathogen of the pig digestive
tract, might be present in fermented milk samples.
C. perfringens accounted for up to 33% of all bacte-
ria in some fermentates (Figure 3), but not in oth-
ers, even where the amount of C. perfringens in the
faecal inoculum was high. The subsequent phase
of the study therefore involved investigating the
correlation between the presence of C. perfringens
and that of other bacterial species in fermented
milk samples. The only, but strong, negative cor-
relation (chi-squared o = 5.027°) was recorded for
the presence of C. perfringens and Lactococcus
lactis A346120 (Figure 3). When Lactococcus lac-
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tis A346120 reached 5% or more, C. perfringens
did not exceed 5%, although in faecal samples that
were used as an inoculum for milk fermentation,
C. perfringens was present up to 22% (Samples 5F
and 6F, Figure 3).
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Figure 1. Diversity analysis of faecal and fermented milk
samples

(A) Richness of bacterial composition in faeces and
in fermented milk. (B) Evenness of bacterial composition
in faeces and in fermented milk. Asterisk indicate signifi-
cant difference; The data are presented as maximum and
minimum, as well as the median. The box represent the 25th
and 75™ percentiles of values. (C) PCoA analysis of beta
diversity of faecal and fermented milk samples; The rings
represent faecal samples, and the squares represent fer-
mented milk samples

F = faecal samples; M = fermented milk samples; PCoA =
principal coordinate analysis; pd = phylogenetic diversity

Presence of C. perfringens in fermented
milk samples

Since DNA sequencing can easily detect DNA
from non-viable bacterial cells, 16S microbiome

Sample type fermented milk

Feature ID

g_Lactococcus_A_346120
g Acetobacter

g Lacticaseibacillus
g_Leuconostoc_B
g_Sphingopyxis

g Actinobacillus_B
g_Rothia

g Clostridium_X

f Lachnospiraceae -

Relative to faecal samples

Enriched
Depleted

-5 —4 -3 -2 -1 0 1

Log 2 fold change (LFC)

Figure 2. Bacterial genera and families differentially abundant in fermented milk samples in comparison to faecal

inoculum
The LEC is the estimated mean value of change in the log 2 abundance of a bacterial taxon in fermented milk samples

when compared to faecal samples; The error bars represent the standard error of the mean
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Figure 3. The correlation of C. perfringens and Lactococ-
cus lactis A346120

The black columns represent the proportion of C. per-
fringens 16S rRNA out of all bacteria present; The grey
pattern columns represent the proportion of Lactococcus
lactis A346120; Numbers represent each pair of faecal and
fermented milk pair of sample

F = faecal samples; M = fermented milk samples

profiling can be misleading regarding the presence
of viable bacteria in a sample. Therefore, the vi-
ability of C. perfringens was assessed by performing
a semiquantitative culture detection of C. perfrin-
gens in faecal material and fermented milk samples.
As the samples were collected in 2023 and 2024,
only faecal and fermented milk samples that had
been frozen at —20 °C for no longer than six months
were evaluated for C. perfringens viability by semi-
quantitative culture. Viable C. perfringens was de-
tected in all nine tested faecal samples, though
in varying abundance, and in eight out of nine
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Figure 4. Survival of C. perfringens under different pH
conditions

The values represent the percentage of C. perfringens rela-
tive to the initial dose of inoculum at time points of 1, 3
and 6 h of cultivation. (A—C) Three different C. perfringens
strains originating from piglet diarrhoea

5.0 = pH 5.0; 4.6 = pH 4.6; 4.2 = pH 4.2; 3.8 = pH 3.8

tested fermented milk samples (Table 1). C. per-
fringens was present in low abundance in samples
with a pH below 4.88. However, when the pH did
not decrease below this value, C. perfringens was
highly abundant in three out of four samples (see
Table 1).

Survival of C. perfringens under
different pH conditions

We further tested the hypothesis that C. perfrin-
gens growth is inhibited after a specific growth phase
by a decrease in pH resulting from the fermentation

Table 1. Estimation of C. perfringens viability using semiquantitative culture method and assessment of C. perfringens

proportion in samples by 16S rRNA gene sequencing

Faecal Faecal % of C. perfringens ~ Fermented milk  Fermented % of C. perfringens DNA pH of fer-
sample culture* DNA in faeces** sample milk culture* in fermented milk** mented milk
8F ++++ 34.892 8§M + 17.581 4.23
9F +++ 19.839 IM + 14.275 4.32
10F + 2.255 10M + 33.373 4.16
11F + 0.146 11M - 1.930 4.24
12 F ++++ 37.833 12M + 1.117 3.98
13 F +++++ 1.024 13M ++++ 32.298 5.62
14 F +H+++ 3.909 14 M + 0.150 6.71
15F ++++ 31.593 15M ++ 12.259 4.88
16 F +++++ 2.183 16 M ++++ 0 592

*Crosses represents the amount of C. perfringens, ranging from one cross for sparse growth to five crosses for the most

extensive growth of C. perfringens; **Percentage determined by 16S rRNA gene sequencing
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of sugars by lactic acid bacteria, and that a further
reduction in pH leads to partial inactivation. The re-
sults (Figure 4) show that pH 4.6 or lower inhibits the
growth of C. perfringens. This finding corresponds
with the results of semiquantitative cultivation
of C. perfringens from fermented milk samples.
In fermented milk samples with a pH below 4.8, the
number of C. perfringens colonies was low (Table 1).

Presence of C. perfringens alpha-toxin
in fermented milk samples

Given C. perfringens’s ability to grow in milk,
we further tested for the presence of C. perfringens
alpha-toxin in milk fermentates. The alpha-toxin
was not detected in any of the 16 tested fermented
milk samples using the ELISA method. However, all
C. perfringens isolates were positive for the alpha-
toxin gene (cpa) and the beta2-toxin gene (cpb2).
Still, it was negative for the beta-toxin gene (cpb),
epsilon-toxin gene (etx), iota-toxin gene (iap), and
enterotoxin gene (cpe). We thus conclude that the
isolates were C. perfringens type A isolates typically
present in piglet diarrhoeal faeces.

DISCUSSION

The controlled oral exposure of sows is used with
the intention of protecting suckling piglets against
pathogens causing neonatal diarrhoea (Kohler
1974). The most commonly used and welldocu-
mented method of controlled oral exposure is feed-
ing sows the faeces of diseased piglets (Schwartz
etal. 2013). An alternative protocol involves feeding
sows ground intestines from dead piglets. Although
these protocols are effective in controlling diarrhoea
caused by bacterial and viral pathogens, the primary
concern is uncontrolled exposure of pregnant sows
to these pathogens (Arruda 2010). Another approach
is to provide sow’s milk fermented with faeces from
diseased piglets (Neumann et al. 2020). Although
uncertainty regarding microbial composition re-
mains, it is reduced to bacteria capable of aerobic
or semianaerobic growth in milk. In agreement with
such expectations, microbiota richness and evenness
were lower in fermented milk samples than in the
original faecal samples, documenting the selective
conditions during milk fermentation (Lichtenegger
etal. 2024). Bacteria underrepresented or complete-

ly depleted in fermented milk samples were those
metabolising polysaccharides (Flint et al. 2008).
On the other hand, the prevailing bacteria, such
as Lactobacillus, Acetobacter, and Lactococcus, are
taxa previously reported in fermented milk (Zhong
et al. 2016). Some of them (Lactococcus) also over-
lap with the microbiota found in fermented cheese
(Korena et al. 2023), which is not too surprising,
given that the same milk serves as the environment
for microbial multiplication.

Interestingly, in some fermented milk samples,
we found a high proportion of C. perfringens
16S rDNA. The high amount of C. perfringens 16S
rDNA in fermented milk corresponded with a high
amount of C. perfringens 16S rDNA in the faeces
used as the inoculum. However, this was not the
case in all pairs of faecal inoculum-fermented
milk. In some pairs, the amount of C. perfringens
16S rDNA was high in faeces but low or not de-
tected in fermented milk. Interestingly, the deple-
tion of C. perfringens 16S rDNA was correlated with
the presence of Lactococcus lactis A346120 in fer-
mented milk. The presence of a high amount of vi-
able C. perfringens in fermented milk may represent
a potential health risk. Although production of al-
pha-toxin by C. perfringens has been associated with
diarrhoea in piglets (Czanderlova et al. 2006), this
toxin was not detected in any of the fermented milk
samples. Milk as a substrate and the culture condi-
tions used, thus, probably do not induce alpha-toxin
expression. While this increases the safety of milk
fermentates for sows, it also eliminates the chance
of developing an antibody response to alpha-toxin
(Salvarani et al. 2013). We further evaluated the
viability of C. perfringens in fermented milk and
found that it was dependent on the pH of the re-
sulting fermented milk. In laboratory cultures, the
viability of C. perfringens decreased when the pH
was below 4.6. Similarly, the viability of C. perfrin-
gens decreased when the pH of fermented milk fell
below 4.8. To increase the safety of milk fermen-
tates, it might be advisable to check the pH of milk
fermentates on farms and use only batches with pH
lower than 4.6. In addition, since there are some
species with negative correlation to C. perfringens,
e.g. Lactococcus lactis A346120, it might be possible
to obtain such strains in pure culture and add them
in later phase of milk cultivation or together with
faecal inoculum. Such approaches and control mea-
sures may improve the preparation of antigenrich
but safe fermented milk feedback on farms.
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