Vet Med - Czech, 2021, 66(2):45-57 | DOI: 10.17221/57/2020-VETMED

Passive immunity in lambs: Colostral and serum γ-glutamyltransferase as a predictor of IgG concentration and related to the diseases from birth to 12 weeks of lifeOriginal Paper

E Gokce ORCID...1, A Haydar Kirmizigul1, O Atakisi2, M Kuru3, H Metin Erdogan4
1 Internal Diseases Department, Veterinary Medicine Faculty, Kafkas University, Kars, Turkey
2 Chemistry Department, Art and Science Faculty, Kafkas University, Kars, Turkey
3 Gynaecology Department, Veterinary Medicine Faculty, Kafkas University, Kars, Turkey
4 Internal Diseases Department, Veterinary Medicine Faculty, Aksaray University, Aksaray, Turkey

The main goal of this study was to find a link between colostrum and the 1-day-old lamb serum γ-glutamyltransferase (GGT) activity and immunoglobulin G (IgG) concentration and their relation with neonatal diseases and beyond. Further, to set a linear relationship between the serum GGT activity (SGGTA) and the IgG concentration (SIgGC) in different days of the neonatal period, thereby determining the feasibility of the GGT activity in the prediction of the colostrum quality and passive immunity and to define a cut-off point for the SGGTA associated with an increased risk of illness or death in lambs. For this purpose, blood samples were obtained from the lambs before the colostrum intake (day 0) and on different days (1, 2, 4, 7, 14 and 28) in the neonatal period. The colostrum was collected from the respective ewes (n = 254) related to the lambs. The most accurate (R2 = 0.652) model for predicting the SIgGC or passive immune status was the multiple regression model developed to calculate ln[IgG] from ln[GGT] in healthy neonatal lambs using the serum GGT and IgG values of day 0, 1, 2, 4, 7, 14 and 28. The In[GGT] activity at 24 h after birth in lambs that died or became ill during the neonatal period accounted for approximately 77% and 88% of the variation in the ln[IgG] concentration at 24 h after birth, respectively. The study revealed that SGGTA-24 > 500 IU may be considered as a critical cut-off point for the adequate colostral passive transfer. This study also disclosed that the colostral GGT activity might be used as an indicator to determine the colostrum quality.

Keywords: colostrum quality; cut-off value; GGT; IgG; neonatal lamb health

Received: March 11, 2020; Accepted: August 22, 2020; Published: February 28, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gokce E, Kirmizigul AH, Atakisi O, Kuru M, Erdogan HM. Passive immunity in lambs: Colostral and serum γ-glutamyltransferase as a predictor of IgG concentration and related to the diseases from birth to 12 weeks of life. Vet Med - Czech. 2021;66(2):45-57. doi: 10.17221/57/2020-VETMED.
Download citation

References

  1. Alves AC, Alves NG, Ascari IJ, Junqueira FB, Coutinho AS, Lima RR, Perez JR, De Paula SO, Furusho-Garcia IF, Abreu LR. Colostrum composition of Santa Inês sheep and passive transfer of immunity to lambs. J Dairy Sci. 2015 Jun;98(6):3706-16. Go to original source... Go to PubMed...
  2. Aydogdu U, Guzelbektes H. Efect of colostrum composition on passive calf immunity in primiparous and multiparous dairy cows. Vet Med-Czech. 2018 Jan;63(1):1-11. Go to original source...
  3. Belkasmi F, Madani T, Mouffok C, Semara L. Enzymatic quality of colostrum in Ouled Djellal ewes, Algeria. Biol Rhythm Res. 2019 Jun:1-9. Go to original source...
  4. Britti D, Massimini G, Peli A, Luciani A, Boari A. Evaluation of serum enzyme activities as predictors of passive transfer status in lambs. J Am Vet Med Assoc. 2005 Mar 15;226 (6):951-5. Go to original source... Go to PubMed...
  5. Gokce E, Atakisi O, Kirmizigul AH, Unver A, Erdogan HM. Passive immunity in lambs: Serum lactoferrin concentrations as a predictor of IgG concentration and its relation to health status from birth to 12 weeks of life. Small Rumin Res. 2014;116(2-3):219-28. Go to original source...
  6. Gokce E, Erdogan HM. An epidemiological study on neonatal lamb health. Kafkas Univ Vet Fak Derg. 2009;15(2): 225-36.
  7. Gokce E, Kirmizigul AH, Erdogan HM, Citil M. Risk factors associated with passive immunity, health, birth weight and growth performance in lambs: I. Effect of parity, dam's health, birth weight, gender, type of birth and lambing season on morbidity and mortality. Kafkas Univ Vet Fak Derg. 2013;19(Suppl-A):A153-60. Go to original source...
  8. Gokce E, Atakisi O, Kirmizigul AH, Erdogan HM. Interrelationships of serum and colostral IgG (passive immunity) with total protein concentrations and health status in lambs. Kafkas Univ Vet Fak Derg. 2019; 25(3):387-96.
  9. Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol. 2019 May;211:75-84. Go to original source... Go to PubMed...
  10. Hogan I, Doherty M, Fagan J, Kennedy E, Conneely M, Brady P, Ryan C, Lorenz I. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Ir Vet J. 2015 Aug 25;68(1):18. Go to original source... Go to PubMed...
  11. Lee SH, Jaekal J, Bae CS, Chung BH, Yun SC, Gwak MJ, Noh GJ, Lee DH. Enzyme-linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J Vet Intern Med. 2008 Jan-Feb;22(1):212-8. Go to original source... Go to PubMed...
  12. Lopreiato V, Ceniti C, Trimboli F, Fratto E, Marotta M, Britti D, Morittu VM. Evaluation of the capillary electrophoresis method for measurement of immunoglobulin concentration in ewe colostrum. J Dairy Sci. 2017 Aug; 100(8):6465-9. Go to original source... Go to PubMed...
  13. Loste A, Ramos J, Fernandez A, Ferrer L, Lacasta D, Verde M, Marca M, Ortin A. Effect of colostrum treated by heat on immunological parameters in newborn lambs. Livest Sci. 2008;117(2-3):176-83. Go to original source...
  14. Maden M, Altunok V, Birdane FM, Aslan V, Nizamlioglu M. Blood and colostrum/milk serum gamma-glutamyltransferase activity as a predictor of passive transfer status in lambs. J Vet Med B Infect Dis Vet Public Health. 2003 Apr;50(3):128-31. Go to original source... Go to PubMed...
  15. Massimini G, Peli A, Boari A, Britti D. Evaluation of assay procedures for prediction of passive transfer status in lambs. Am J Vet Res. 2006 Apr;67(4):593-8. Go to original source... Go to PubMed...
  16. McGrath BA, Fox PF, McSweeney PL, Kelly AL. Composition and properties of bovine colostrum: A review. Dairy Sci Technol. 2016;96(2):133-58. Go to original source...
  17. Niine T, Peetsalu K, Tummeleht L, Kuks A, Orro T. Acute phase response in organic lambs associated with colostrum serum amyloid A, weight gain, and Cryptosporidium and Giardia infections. Res Vet Sci. 2018 Dec;121:117-23. Go to original source... Go to PubMed...
  18. Nowak R, Poindron P. From birth to colostrum: Early steps leading to lamb survival. Reprod Nutr Dev. 2006 JulAug;46(4):431-46. Go to original source... Go to PubMed...
  19. Parish SM, Tyler JW, Besser TE, Gay CC, Krytenberg D. Prediction of serum IgG1 concentration in Holstein calves using serum gamma glutamyltransferase activity. J Vet Intern Med. 1997 Nov-Dec;11(6):344-7. Go to original source... Go to PubMed...
  20. Pauli JV. Colostral transfer of gamma glutamyl transferase in lambs. N Z Vet J. 1983 Sep;31(9):150-1. Go to original source... Go to PubMed...
  21. Swarnkar C, Prince L, Sonawane G. Wind chill index and neonatal lamb mortality at an organized farm in semiarid Rajasthan. Biol Rhythm Res. 2018;49(6):862-71. Go to original source...
  22. Tessman RK, Tyler JW, Parish SM, Johnson DL, Gant RG, Grasseschi HA. Use of age and serum gamma-glutamyltransferase activity to assess passive transfer status in lambs. J Am Vet Med Assoc. 1997 Nov 1;211(9):1163-4. Go to original source...
  23. Voigt K, Frohnmayer S, Strobel H, Sauter-Louis C, Zerbe H. Time pattern and causes of lamb mortality on commercial sheep farms in Southern Germany operating conservation grazing and non-seasonal production systems-a field study. Berl Munch Tierarztl Wochenschr. 2019;132(3-4): 156-65.
  24. Wilson LK, Tyler JW, Besser TE, Parish SM, Gant R. Prediction of serum IgG1 concentration in beef calves based on age and serum gamma-glutamyl-transferase activity. J Vet Intern Med. 1999 Mar-Apr;13(2):123-5. Go to original source...
  25. Zarrilli A, Micera E, Lacarpia N, Lombardi P, Pero M, Pelagalli A, D Angelo D, Mattia M, Avallone L. Evaluation of ewe colostrum quality by estimation of enzyme activity levels. Rev Med Vet. 2003;154(8/9):521-4.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.