Vet Med - Czech, 2021, 66(3):110-116 | DOI: 10.17221/156/2020-VETMED
The inhibiting effect of microwave radiation on Paenibacillus larvae spores suspended in waterOriginal Paper
- 1 Department of Pathological Morphology, State Veterinary Institute Olomouc, Olomouc, Czech Republic
- 2 Department of Special Microbiology, State Veterinary Institute Olomouc, Olomouc, Czech Republic
- 3 Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- 4 Department of Biochemistry, Faculty of Nature Science, Palacky University Olomouc, Olomouc, Czech Republic
- 5 Department of Food and Feed Safety, Veterinary Research Institute Brno, Brno, Czech Republic
The aim of this paper was to investigate the effects of microwave radiation on the viability of Paenibacillus larvae spores and to study the relationship between the microwave power consumption, the exposure time and the number of spores in the examined suspensions. Sterile distilled water suspensions were made using larval detritus, to contain tens, hundreds and thousands of spores. The suspensions of all the dilutions were gradually exposed to a microwave radiation power of 170, 510 and 850 W. In all the cases, the exposure time was 1, 2, 3, 4, 5, 10, 15, 20, 25 and 30 minutes. After cooling, 0.1 ml of each exposed suspension was inoculated onto three modified MYP (mannitol egg yolk polymyxin) agar plates and incubated aerobically at 37 ± 1 °C for 120 hours. The statistical evaluation of the spore counts decreasing with time was performed with the use of the nonparametric Friedman's variance test using the Unistat Statistical Package v6.5. The results showed that the rate of devitalisation of the spores is dependent on the microwave oven power consumption, but independent of the number of spores. Using a power consumption of 170, 510 and 850 W, the devitalisation of the spores occurred after 15, 3 and 2 min of exposure, respectively.
Keywords: exposure; frequency; microorganisms; resistance; sporulating
Received: July 30, 2020; Accepted: November 13, 2020; Published: March 31, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave: A brief review. Bioresour Technol. 2003;87(2):155-9.
Go to original source...
Go to PubMed...
- Bzdil J. Nove metody v diagnostice moru vceliho plodu [New methods in American foulbrood diagnostics]. [PhD thesis]. Brno: University of Veterinary and Farmaceutical Sciences; 2010. 121 p. Czech.
- Celandroni F, Longo I, Tosoratti N, Giannessi F, Ghelardi E, Salvetti S, Baggiani A, Senesi S. Effect of microwave radiation on Bacillus subtilis spores. J Appl Microbiol. 2004;97(6):1220-7.
Go to original source...
Go to PubMed...
- Hansen H, Brodsgaard CJ. American Foulbrood: A review of its biology, diagnosis and control. Bee World. 1999; 80(1):5-23.
Go to original source...
- Jankovic SM, Milosev MZ, Novakovic MLJ. The effects of microwave radiation on microbial cultures. Hosp Pharm Int Multi J. 2014;1(2):102-8.
Go to original source...
- Jones GA, Layer DH, Osenkowsky TG. National Assotiation of Broadcasters Engineering Handbook. 10th ed. Oxford, UK: Focal Press; 2013. 2120 p.
Go to original source...
- Kim SY, Shin SJ, Song CH, Jo EK, Kim HJ, Park JK. Destruction of Bacillus licheniformis spores by microwave irradiation. J Appl Microbiol. 2009 Mar;106(3):877-85.
Go to original source...
Go to PubMed...
- Meredith RJ. Engineers' handbook of industrial microwave heating. London, UK: Institution of Electrical Engineering; 1998. 363 p.
Go to original source...
- Moline de la Paz M, Fernandez NJ, Medici SK, Fasce D, Gende LB. Effect of microwave treatment on microbial contamination of honeys and on their physicochemical and thermal properties. Pol J Food Nutr Sci. 2015;65(2): 119-26.
Go to original source...
- Ojha SC, Chankhamhaengdecha S, Singhakaew S, Ounjai P, Janvilisri T. Inactivation of Clostridium difficile spores by microwave irradiation. Anaerobe. 2016 Apr;38:14-20.
Go to original source...
Go to PubMed...
- Quinn PJ, Markey BK, Leonard FC, FitzPatrick ES, Fanning S, Hartigan PJ. Veterinary microbiology and microbial disease. 2nd ed. Oxford, UK: Blackwell Publishing Ltd.; 2011. 912 p.
- Woo IS, Rhee IK, Park HD. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl Environ Microbiol. 2000 May;66(5):2243-7.
Go to original source...
Go to PubMed...
- Zar JH. Biostatistical analysis. 4th ed. Upper Saddle River, USA: Prentice Hall; 1999. 929 p.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.