Vet Med - Czech, 2022, 67(8):418-429 | DOI: 10.17221/6/2021-VETMED

Tolerance of Biopronil Spot on® after repeated single- or multiple-dose topical treatments in dogsOriginal Paper

H Turlewicz-Podbielska ORCID...1, CJ Kowalski2, A Burmanczuk2, A Vynjarska3, J Wojciechowski4, M Pomorska-Mol ORCID...1, M Rybska ORCID...1
1 Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
2 Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
3 Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Lviv Oblast, Ukraine
4 VETPOL, Grudziadz, Poland

A variety of toxic effects of fipronil (FIP), the active substance of Biopronil Spot on®, on animals and humans has been reported and raises the need to investigate the FIP toxic effects. The objectives of the study were the evaluation of the local and systemic tolerance of Biopronil Spot on® and the assessment of its influence on haematological and biochemical blood parameters after single and multiple topical treatment in dogs. Thirty-two mixed breed dogs were included in the study assessing the local and general tolerance of Biopronil Spot on® following single, triple and fivefold dose after spot-on multiple applications in dogs (on days 0, +28 and +56) at a dosage 134 mg for a dog weighing 10-20 kg and 268 mg for a dog weighing 21-40 kg. A physical examination and biochemical and haematological analyses were performed on the days of the study as follows: -14, -5, +3, +31, +59, +70. No visible pathological changes on the skin were observed. The biochemical and haematological indicators rarely exceeded the reference values. No influence of Biopronil Spot on® administered in single, triple and fivefold repeated doses on the assessed clinical, haematological and biochemical parameters in dogs was found under the conditions described in the study.

Keywords: adverse effects; biochemical indicators; fipronil; haematological indicators; substance-related disorders

Received: January 13, 2021; Accepted: March 18, 2022; Prepublished online: May 19, 2022; Published: August 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Turlewicz-Podbielska H, Kowalski C, Burmanczuk A, Vynjarska A, Wojciechowski J, Pomorska-Mol M, Rybska M. Tolerance of Biopronil Spot on® after repeated single- or multiple-dose topical treatments in dogs. Vet Med - Czech. 2022;67(8):418-429. doi: 10.17221/6/2021-VETMED.
Download citation

References

  1. Abouelghar GE, El-Bermawy ZA, Salman HMS. Oxidative stress, hematological and biochemical alterations induced by sub-acute exposure to fipronil (COACH®) in albino mice and ameliorative effect of selenium plus vitamin E. Environ Sci Pollut Res Int. 2020 Mar;27(8): 7886-900. Go to original source... Go to PubMed...
  2. Arif SH, Yadav N, Rehman S, Mehdi G. Study of hemolysis during storage of blood in the blood bank of a tertiary health care centre. Indian J Hematol Blood Transfus. 2017 Dec;33(4):598-602. Go to original source... Go to PubMed...
  3. Badgujar PC, Pawar NN, Chandratre GA, Telang AG, Sharma AK. Fipronil induced oxidative stress in kidney and brain of mice: Protective effect of vitamin E and vitamin C. Pestic Biochem Physiol. 2015 Feb;118:10-8. Go to original source... Go to PubMed...
  4. Badgujar PC, Chandratre GA, Pawar NN, Telang AG, Kurade NP. Fipronil induced oxidative stress involves alterations in SOD1 and catalase gene expression in male mice liver: Protection by vitamins E and C. Environ Toxicol. 2016 Sep;31(9):1147-58. Go to original source... Go to PubMed...
  5. Cravedi JP, Delous G, Zalko D, Viguie C, Debrauwer L. Disposition of fipronil in rats. Chemosphere. 2013 Nov; 93(10):2276-83. Go to original source... Go to PubMed...
  6. De Oliveira PR, Bechara GH, Denardi SE, Oliveira RJ, Mathias MI. Cytotoxicity of fipronil on mice liver cells. Microsc Res Tech. 2012 Jan;75(1):28-35. Go to original source... Go to PubMed...
  7. Gupta R. Fipronil. In: Gupta R, editor. Veterinary toxicology: Basic and clinical principles. San Diego, USA: Academic Press; 2007. p. 502-4. Go to original source...
  8. Hainzl D, Cole LM, Casida JE. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol. 1998 Dec;11(12):1529-35. Go to original source... Go to PubMed...
  9. Khan S, Jan MH, Kumar D, Telang AG. Firpronil induced spermotoxicity is associated with oxidative stress, DNA damage and apoptosis in male rats. Pestic Biochem Physiol. 2015 Oct;124:8-14. Go to original source... Go to PubMed...
  10. Koslowski S, Latapy C, Auvray P, Blondel M, Meijer L. Longterm fipronil treatment induces hyperactivity in female mice. Int J Environ Res Public Health. 2020 Feb 29; 17(5):1579. Go to original source... Go to PubMed...
  11. Mansour SA, Mossa AH. Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pest Biochem Physiol. 2009 Jan;93(1):34-9. Go to original source...
  12. Mansour SA, Mossa AH. Oxidative damage, biochemical and histopathological alteration in rat exposed to chlorpyrifos and the role of zinc as antioxidant. Pest Biochem Physiol. 2010 Jan;96(1):14-23. Go to original source...
  13. Meadows C, Guerino F, Sun F. A randomized, blinded, controlled USA field study to assess the use of fluralaner topical solution in controlling canine flea infestations. Parasite Vector. 2017 Jan 19;10(1):36. Go to original source... Go to PubMed...
  14. Mohamed F, Senarathna L, Percy A, Abeyewardene M, Eaglesham G, Cheng R, Azher S, Hittarage A, Dissanayake W, Sheriff MH, Davies W, Buckley NA, Eddleston M. Acute human self-poisoning with the N-phenylpyrazole insecticide fipronil - A GABAA-gated chloride channel blocker. J Toxicol Clin Toxicol. 2004 Sep;42(7): 955-63. Go to original source... Go to PubMed...
  15. Mossa ATH, Swelam ES, Mohafrash SMM. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicol Rep. 2015 Feb 19;2:775-8. Go to original source... Go to PubMed...
  16. Prashanth MS, David M. Changes in nitrogen metabolism of the freshwater fish Cirrhinus mrigala following exposure to cypermethrin. J Basic Clin Physiol Pharmacol. 2006;17(1):63-70. Go to original source... Go to PubMed...
  17. Rohdich N, Roepke RK, Zschiesche E. A randomized, blinded, controlled and multi-centered field study comparing the efficacy and safety of BravectoTM (fluralaner) against FrontlineTM (fipronil) in flea- and tick-infested dogs. Parasite Vector. 2014 Mar 4;7(1):1-5. Go to original source... Go to PubMed...
  18. Schomaker S, Warner R, Bock J, Johnson K, Potter D, Van Winkle J, Aubrecht J. Assessment of emerging biomarkers of liver injury in human subjects. Toxicol Sci. 2013 Apr;132(2):276-83. Go to original source... Go to PubMed...
  19. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EA, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 2015 Jan; 22(1):5-34. Go to original source... Go to PubMed...
  20. Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: Environmental fate, ecotoxicology, and human health concerns. Rev Environ Contam Toxicol. 2003; 176:1-66. Go to original source... Go to PubMed...
  21. Wang X, Martinez MA, Wu Q, Ares I, Martinez-Larranaga MR, Anadon A, Yuan Z. Fipronil insecticide toxicology: Oxidative stress and metabolism. Crit Rev Toxicol. 2016 Nov;46(10):876-99. Go to original source... Go to PubMed...
  22. Winnicka A. Wartosci referencyjne podstawowych badan laboratoryjnych w weterynarii [Reference values for basic laboratory tests in veterinary medicine]. Warsaw, Poland: SGGW Warszawa; 2004. p. 26, 103, 114. Polish.
  23. Zhao X, Salgado VL, Yeh JZ, Narahashi T. Differential actions of fipronil and dieldrin insecticides on GABAgated chloride channels in cockroach neurons. J Pharmacol Exp Ther. 2003 Sep;306(3):914-24. Go to original source... Go to PubMed...
  24. Zhao X, Yeh JZ, Salgado VL, Narahashi T. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J Pharmacol Exp Ther. 2004 Jul;310(1):192-201. Go to original source... Go to PubMed...
  25. Ziliotto L, Luna SPL, Filho DAA, Resende LO, Aun AG, Braz MG. Genotoxicity assessment of fipronil (Frontline plus®) in Canis familiaris. Pesqui Vet Brasil. 2017 Mar; 37(3):257-60. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.