Vet Med - Czech, 2023, 68(9):359-367 | DOI: 10.17221/42/2023-VETMED

Evaluation of Streptococcus species isolated from subclinical sheep mastitis by molecular methods and determination of virulence factors and antimicrobial resistance genesOriginal Paper

V Ozavci ORCID...1, HT Yuksel Dolgun ORCID...2, S Kirkan ORCID...2, Y Seferoglu ORCID...2, Z Semen ORCID...3, U Parin ORCID...2
1 Department of Microbiology, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkiye
2 Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkiye
3 Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkiye

Streptococcus (S.) species are important pathogens that cause mastitis in sheep. The study aimed to examine Streptococcus species in sheep milk with subclinical mastitis, assessing their prevalence, antimicrobial resistance, and virulence genes. A total of 200 milk samples were collected from sheep farms in İzmir’s five districts. Out of 32 (28.6%) Streptococcus isolates identified by phenotypic methods, 25 were genotypically identified as S. uberis, 5 as S. agalactiae, and 2 as S. dysgalactiae. Disk diffusion was used to determine the antimicrobial resistance of the isolates. PCR was employed to identify antimicrobial resistance and virulence genes in the isolates. The highest resistance was found for cloxacillin (100%), and the highest sensitivity was found for florfenicol (84%). The most common resistance gene combination was tetM+tetS (3/32) for S. uberis in 9.4%. A total of five virulence genes were detected. GapC+sua (56.2%) constituted the most common gene pattern. The highest virulence gene gapC was detected in 78.1% (25/32) of the isolates. The cylE gene was not detected (0%) in the isolates. Streptococcus species may play a role in mastitis in sheep, emphasising the need for meticulous hygienic milking practices.

Keywords: dairy sheep; mastitis; PCR; Streptococcus strains

Received: April 10, 2023; Revised: September 5, 2023; Accepted: September 12, 2023; Prepublished online: September 25, 2023; Published: September 29, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ozavci V, Yuksel Dolgun H, Kirkan S, Seferoglu Y, Semen Z, Parin U. Evaluation of Streptococcus species isolated from subclinical sheep mastitis by molecular methods and determination of virulence factors and antimicrobial resistance genes. Vet Med - Czech. 2023;68(9):359-367. doi: 10.17221/42/2023-VETMED.
Download citation

References

  1. Abd-Elfatah EB, Fawzi EM, Elsheikh HA, Shehata AA. Prevalence, virulence genes and antibiogram susceptibility pattern of Staphylococcus aureus and Streptococcus agalactiae isolated from mastitic ewes. Int J Vet Sci. 2023 Jun;12(2):152-60.
  2. Ahmed W, Neubauer H, Tomaso H, El Hofy FI, Monecke S, Abdeltawab AA, Hotzel H. Characterization of Staphylococci and Streptococci isolated from milk of bovides with mastitis in Egypt. Pathogens. 2020 May 15;9(5):381. Go to original source... Go to PubMed...
  3. An R, Gao M, Meng Y, Tong X, Chen J, Wang J. Infective mastitis due to bovine-associated Streptococcus dysgalactiae contributes to clinical persistent presentation in a murine mastitis model. Vet Med Sci. 2021 Sep;7(5):1600-10. Go to original source... Go to PubMed...
  4. Bingen E, Fitoussi F, Doit C, Cohen R, Tanna A, George R, Loukil C, Brahimi N, Le Thomas I, Deforche D. Resistance to macrolides in Streptococcus pyogenes in France in pediatric patients. Antimicrob Agents Chemother. 2000 Jun;44(6):1453-7. Go to original source... Go to PubMed...
  5. Ceniti C, Britti D, Santoro AML, Musarella R, Ciambrone L, Casalinuovo F, Costanzo N. Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Ital J Food Saf. 2017 May 3;6(2):6612. Go to original source... Go to PubMed...
  6. Chen P, Qiu Y, Liu G, Li X, Cheng J, Liu K, Qu W, Zhu C, Kastelic JP, Han B, Gao J. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J Dairy Sci. 2021 Jan;104(1):702-14. Go to original source... Go to PubMed...
  7. CLSI - Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S25. Wayne: Clinical and Laboratory Standards Institute; 2015.
  8. El-Shafei R, Farag A, Elkenany RM, Younis G. CylE and mig as virulence genes of streptococci isolated from mastitis in cows and buffalo in Egypt. Mansoura Vet Med J. 2020 Nov;21(4):149-54. Go to original source...
  9. EUCAST - European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.1.1-8. 2013.
  10. Guerreiro O, Velez Z, Alvarenga N, Matos C, Duarte M. Molecular screening of ovine mastitis in different breeds. J Dairy Sci. 2013 Feb;96(2):752-60. Go to original source... Go to PubMed...
  11. Haenni M, Saras E, Chaussiere S, Treilles M, Madec JY. ermB-mediated erythromycin resistance in Streptococcus uberis from bovine mastitis. Vet J. 2011 Sep;189(3):356-8. Go to original source... Go to PubMed...
  12. Haenni M, Lupo A, Madec JY. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018 Mar;6(2). Go to original source... Go to PubMed...
  13. Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. The role of Streptococcus spp. in bovine mastitis. Microorganisms. 2021 Jul 13;9(7):1497. Go to original source... Go to PubMed...
  14. Kaczorek E, Malaczewska J, Wojcik R, Rekawek W, Siwicki AK. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. J Dairy Sci. 2017a Aug;100(8):6442-53. Go to original source... Go to PubMed...
  15. Kaczorek E, Malaczewska J, Wojcik R, Siwicki AK. Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Vet Res. 2017b Dec 28;13(1):398. Go to original source... Go to PubMed...
  16. Kerro Dego O, Almeida R, Ivey S, Agga GE. Evaluation of Streptococcus uberis surface proteins as vaccine antigens to control S. uberis mastitis in dairy cows. Vaccines (Basel). 2021 Aug 5;9(8):868. Go to original source... Go to PubMed...
  17. Kot B, Wierzchowska K, Piechota M, Gruzewska A. Antimicrobial resistance patterns in methicillin-resistant staphylococcus aureus from patients hospitalized during 2015-2017 in hospitals in Poland. Med Princ Pract. 2020;29(1):61-8. Go to original source... Go to PubMed...
  18. Kumar A, Verma AK, Rahal A, Sharma AK, Varshney S, Gupta MK. Outbreak of mastitis in sheep flock due to Streptococcus agalactiae and unusual neonatal lamb mortality. Adv Anim Vet Sci. 2013 Aug;1(4):120-2.
  19. MAF - Ministry Of Agriculture And Forestry. Animal data. [Internet]. 2023 Aug [cited 2023 Aug 26]. Available from: https://izmir.tarimorman.gov.tr/Belgeler/%C4%B0l%20M%C3%BCd%C3%BCrl%C3%BC346 %C4%9F%C3%BC%20Brifing.pdf.
  20. Murphy TW, Stewart WC, Taylor JB. Factors affecting ewe somatic cell count and its relationship with lamb weaning weight in extensively managed flocks. Transl Anim Sci. 2018 Sep 27;2(Suppl_1):S159-S62. Go to original source... Go to PubMed...
  21. Naranjo-Lucena A, Slowey R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J Dairy Sci. 2023 Jan;106(1):1-23. Go to original source... Go to PubMed...
  22. Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. 2001 Aug;15(4):209-15. Go to original source... Go to PubMed...
  23. Novac CS, Andrei S. The impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat's milk: A review. Pathogens. 2020 Oct 24;9(11):882. Go to original source... Go to PubMed...
  24. Rosa NM, Dupre I, Azara E, Longheu CM, Tola S. Molecular typing and antimicrobial susceptibility profiles of Streptococcus uberis isolated from sheep milk. Pathogens. 2021 Nov 16;10(11):1489. Go to original source... Go to PubMed...
  25. Rosa NM, Penati M, Fusar-Poli S, Addis MF, Tola S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Vet Res. 2022 Oct 15;53(1):84. Go to original source... Go to PubMed...
  26. Ruegg PL. A 100-year review: Mastitis detection, management, and prevention. J Dairy Sci. 2017 Dec;100(12):10381-97. Go to original source... Go to PubMed...
  27. Ruegsegger F, Ruf J, Tschuor A, Sigrist Y, Rosskopf M, Hassig M. Antimicrobial susceptibility of mastitis pathogens of dairy cows in Switzerland. Schweiz Arch Tierheilkd. 2014 Oct;156(10):483-8. Go to original source... Go to PubMed...
  28. Saed HAER, Ibrahim HMM. Antimicrobial profile of multidrug-resistant Streptococcus spp. isolated from dairy cows with clinical mastitis. J Adv Vet Anim Res. 2020 Mar 21;7(2):186-97. Go to original source... Go to PubMed...
  29. Sevinc G, Sahin Z, Aydogdu MH. Turkiye'nin kucukbas hayvan varligi ile sut uretimindeki gelismelerin son donemlerindeki trend analizi [The trend analysis of the developments of ovine presence and its milk production in Turkey]. ASR Journal. 2022 Mar;35(7):377-84. Turkish. Go to original source...
  30. Schalm OW, Carrol EJ, Jain NC. Bovine mastitis. 1st ed. Philadelphia, USA: Lea & Febiger; 1971. p. 128-57.
  31. Shen J, Wu X, Yang Y, Lv Y, Li X, Ding X, Wang S, Yan Z, Yan Y, Yang F, Li H. Antimicrobial resistance and virulence factor of Streptococcus dysgalactiae isolated from clinical bovine mastitis cases in Northwest China. Infect Drug Resist. 2021 Aug 31;14:3519-30. Go to original source... Go to PubMed...
  32. Shi H, Zhou M, Zhang Z, Hu Y, Song S, Hui R, Wang L, Li G, Yao L. Molecular epidemiology, drug resistance, and virulence gene analysis of Streptococcus agalactiae isolates from dairy goats in backyard farms in China. Front Cell Infect Microbiol. 2023 Jan 9;12:1049167. Go to original source... Go to PubMed...
  33. Tian XY, Zheng N, Han RW, Ho H, Wang J, Wang YT, Wang SQ, Li HG, Liu HW, Yu ZN. Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. Microb Pathog. 2019 Jun;131:33-9. Go to original source... Go to PubMed...
  34. TUIK - Turkish Statistical Institute. Animal data [Internet]. 2022 Aug [cited 2023 Aug 9]. Available from: https://data.tuik.gov.tr/Bulten/Index?p=Cig-Sut-Uretim-Istatistik-leri-2022-49699.
  35. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38. Go to original source... Go to PubMed...
  36. Vezina B, Rosa MN, Canu A, Tola S. Genomic surveillance reveals antibiotic resistance gene transmission via phage recombinases within sheep mastitis-associated Streptococcus uberis. BMC Vet Res. 2022 Jul 7;18(1):264. Go to original source... Go to PubMed...
  37. Wente N, Kromker V. Streptococcus dysgalactiae - Contagious or environmental? Animals. 2020 Nov 22;10(11):2185. Go to original source... Go to PubMed...
  38. Zastempowska E, Twaruzek M, Grajewski J, Lassa H. Virulence factor genes and cytotoxicity of Streptococcus agalactiae isolated from bovine mastitis in Poland. Microbiol Spectr. 2022 Jun 29;10(3):e0222421. Go to original source... Go to PubMed...
  39. Zhang S, Piepers S, Shan R, Cai L, Mao S, Zou J, Ali T, De Vliegher S, Han B. Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J Dairy Sci. 2018 Apr;101(4):3344-55. Go to original source... Go to PubMed...
  40. Zigo F, Vasil' M, Ondrasovicova S, Vyrostkova J, Bujok J, Pecka-Kielb E. Maintaining optimal mammary gland health and prevention of mastitis. Front Vet Sci. 2021 Feb 17;8:607311. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.