Vet Med - Czech, 2024, 69(8):281-296 | DOI: 10.17221/35/2024-VETMED

Probiotic bacteria of wild boar origin intended for piglets – An in vitro studyOriginal Paper

I Kostovova ORCID...1, K Kavanova ORCID...1, M Moravkova ORCID...1, J Gebauer2, L Leva2, M Vícenova ORCID...2, V Babak ORCID...1, M Faldyna ORCID...2, M Crhanova ORCID...1
1 Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
2 Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic

Using probiotics represents a potential solution to post-weaning diarrheal diseases in piglets on commercial farms. The gastrointestinal tract of wild boars serves as a promising reservoir of novel lactic acid bacteria with suitable probiotic characteristics. In this study, we isolated eight bacterial strains from the intestinal content of wild boars identified as representatives of the species Bifidobacterium apri, Lactobacillus amylovorus, and Ligilactobacillus salivarius. These isolates underwent in vitro analysis and characterisation to assess their biological safety and probiotic properties. Analysis of their full genome sequences revealed the absence of horizontally transferrable genes for antibiotic resistance. However, seven out of eight isolates harboured genes encoding various types of bacteriocins in their genomes, and bacteriocin production was further confirmed by mass spectrometry analysis. Most of the tested strains demonstrated the ability to inhibit the growth of selected pathogenic bacteria, produce exopolysaccharides, and stimulate the expression of interleukin-10 in porcine macrophages. These characteristics deem the isolates characterised in this study as potential candidates for use as probiotics for piglets during the post-weaning period.

Keywords: antibiotic susceptibility; antimicrobial activity; bacteriocins; exopolysaccharides; interleukin-10

Received: April 25, 2024; Revised: June 14, 2024; Accepted: June 26, 2024; Published: August 29, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kostovova I, Kavanova K, Moravkova M, Gebauer J, Leva L, Vícenova M, et al.. Probiotic bacteria of wild boar origin intended for piglets – An in vitro study. Vet Med - Czech. 2024;69(8):281-296. doi: 10.17221/35/2024-VETMED.
Download citation

References

  1. Abriouel H, Casado Munoz MDC, Lavilla Lerma L, Perez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Galvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int. 2015 Dec;78:465-81. Go to original source... Go to PubMed...
  2. Adetoye A, Pinloche E, Adeniyi BA, Ayeni FA. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018 Aug 30;18(1):96. Go to original source... Go to PubMed...
  3. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004 Aug 1;64(15):5245-50. Go to original source... Go to PubMed...
  4. Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol. 2020 Nov 1;162:853-65. Go to original source... Go to PubMed...
  5. Anjana, Tiwari SK. Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front Cell Infect Microbiol. 2022 May 16;12:851140. Go to original source... Go to PubMed...
  6. Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: An overview. Biomed Res Int. 2018 May 8;2018:9478630. Go to original source... Go to PubMed...
  7. Bravo M, Combes T, Martinez FO, Cerrato R, Rey J, Garcia-Jimenez W, Fernandez-Llario P, Risco D, Gutierrez-Merino J. Lactobacilli isolated from wild boar (Sus scrofa) antagonize Mycobacterium bovis Bacille Calmette-Guerin (BCG) in a species-dependent manner. Front Microbiol. 2019 Jul 30;10:1663. Go to original source... Go to PubMed...
  8. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009 Apr;55(4):611-22. Go to original source... Go to PubMed...
  9. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O'Toole PW. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol. 2018 Dec 13;85(1):e01738-18. Go to original source... Go to PubMed...
  10. Chen XY, Woodward A, Zijlstra RT, Ganzle MG. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl Environ Microbiol. 2014 Sep;80(18):5752-60. Go to original source... Go to PubMed...
  11. Chlebicz A, Slizewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int J Environ Res Public Health. 2018 Apr 26;15(5):863. Go to original source... Go to PubMed...
  12. Collins FWJ, O'Connor PM, O'Sullivan O, Gomez-Sala B, Rea MC, Hill C, Ross RP. Bacteriocin gene-trait matching across the complete Lactobacillus pan-genome. Sci Rep. 2017 Jun 14;7(1):3481. Go to original source... Go to PubMed...
  13. Dec M, Stepien-Pysniak D, Nowaczek A, Puchalski A, Urban-Chmiel R. Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Anaerobe. 2020 Oct;65:102251. Go to original source... Go to PubMed...
  14. ECDC - European Centre for Disease Prevention and Control; European Food Safety Authority (EFSA); European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016-2018. EFSA J. 2021 Jun 30;19(6):e06712. Go to original source... Go to PubMed...
  15. EFSA - European Food Safety Authority, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos ML, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, Lopez-Alonso M, Lopez Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Glandorf B, Herman L, Karenlampi S, Aguilera J, Anguita M, Brozzi R, Galobart J. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018 Mar 28;16(3):e05206. Go to original source... Go to PubMed...
  16. Engevik MA, Ruan W, Esparza M, Fultz R, Shi Z, Engevik KA, Engevik AC, Ihekweazu FD, Visuthranukul C, Venable S, Schady DA, Versalovic J. Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol Rep. 2021 Jan;9(2):e14719. Go to original source... Go to PubMed...
  17. EP - European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Official Journal of the European Union; 2019.b.
  18. Gueimonde M, Sanchez B, G de Los Reyes-Gavilan C, Margolles A. Antibiotic resistance in probiotic bacteria. Front Microbiol. 2013 Jul 18;4:202. Go to original source... Go to PubMed...
  19. Guo XH, Kim JM, Nam HM, Park SY, Kim JM. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe. 2010 Aug;16(4):321-6. Go to original source... Go to PubMed...
  20. Hwang HS, Lee JK, Eom TK, Son SH, Hong JK, Kim KH, Rhim SJ. Behavioral characteristics of weaned piglets mixed in different groups. Asian-Australas J Anim Sci. 2016 Jul;29(7):1060-4. Go to original source... Go to PubMed...
  21. Jia Y, Yang B, Ross P, Stanton C, Zhang H, Zhao J, Chen W. Comparative genomics analysis of Lactobacillus mucosae from different niches. Genes (Basel). 2020 Jan 14;11(1):95. Go to original source... Go to PubMed...
  22. Kavanova L, Matiaskova K, Leva L, Stepanova H, Nedbalcova K, Matiasovic J, Faldyna M, Salat J. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: Apoptosis, production of ROS and formation of multinucleated giant cells. Vet Res. 2017 May 4;48(1):28. Go to original source... Go to PubMed...
  23. Khan H, Flint SH, Yu PL. Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510. J Appl Microbiol. 2013 Aug;115(2):484-94. Go to original source... Go to PubMed...
  24. Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016 Feb 19;351(6275):858-63. Go to original source... Go to PubMed...
  25. Kim MJ, Ku S, Kim SY, Lee HH, Jin H, Kang S, Li R, Johnston TV, Park MS, Ji GE. Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int J Mol Sci. 2018 May 9;19(5):1422. Go to original source... Go to PubMed...
  26. Kole A, Maloy KJ. Control of intestinal inflammation by interleukin-10. Curr Top Microbiol Immunol. 2014;380:19-38. Go to original source... Go to PubMed...
  27. Kyrova K, Stepanova H, Rychlik I, Faldyna M, Volf J. SPI-1 encoded genes of Salmonella Typhimurium influence differential polarization of porcine alveolar macrophages in vitro. BMC Vet Res. 2012 Jul 20;8:115. Go to original source... Go to PubMed...
  28. Lagace L, Pitre M, Jacques M, Roy D. Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl Environ Microbiol. 2004 Apr;70(4):2052-60. Go to original source... Go to PubMed...
  29. Lebeer S, Claes IJ, Vanderleyden J. Anti-inflammatory potential of probiotics: Lipoteichoic acid makes a difference. Trends Microbiol. 2012 Jan;20(1):5-10. Go to original source... Go to PubMed...
  30. Lim HJ, Shin HS. Antimicrobial and immunomodulatory effects of Bifidobacterium strains: A review. J Microbiol Biotechnol. 2020 Dec 28;30(12):1793-800. Go to original source... Go to PubMed...
  31. Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front Vet Sci. 2020 Feb 11;7:49. Go to original source... Go to PubMed...
  32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001 Dec;25(4):402-8. Go to original source... Go to PubMed...
  33. Lokesh D, Parkesh R, Kammara R. Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Sci Rep. 2018 Aug 9;8(1):11897. Go to original source... Go to PubMed...
  34. Lu Q, Guo Y, Yang G, Cui L, Wu Z, Zeng X, Pan D, Cai Z. Structure and anti-inflammation potential of lipoteichoic acids isolated from Lactobacillus strains. Foods. 2022 May 30;11(11):1610. Go to original source... Go to PubMed...
  35. Luo R, Liu C, Li Y, Liu Q, Su X, Peng Q, Lei X, Li W, Menghe B, Bao Q, Liu W. Comparative genomics analysis of habitat adaptation by Lactobacillus kefiranofaciens. Foods. 2023 Apr 10;12(8):1606. Go to original source... Go to PubMed...
  36. McEwen SA, Collignon PJ. Antimicrobial resistance: A one health perspective. Microbiol Spectr. 2018 Mar;6(2). Go to original source... Go to PubMed...
  37. Messaoudi S, Manai M, Kergourlay G, Prevost H, Connil N, Chobert JM, Dousset X. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol. 2013 Dec;36(2):296-304. Go to original source... Go to PubMed...
  38. Monteiro CRAV, do Carmo MS, Melo BO, Alves MS, Dos Santos CI, Monteiro SG, Bomfim MRQ, Fernandes ES, Monteiro-Neto V. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients. 2019 Feb 21;11(2):448. Go to original source... Go to PubMed...
  39. Moravkova M, Kostovova I, Kavanova K, Pechar R, Stanek S, Brychta A, Zeman M, Kubasova T. Antibiotic susceptibility, resistance gene determinants and corresponding genomic regions in Lactobacillus amylovorus isolates derived from wild boars and domestic pigs. Microorganisms. 2022 Dec 30;11(1):103. Go to original source... Go to PubMed...
  40. Nguyen HD, Aljamaei HM, Stadnyk AW. The production and function of endogenous interleukin-10 in intestinal epithelial cells and gut homeostasis. Cell Mol Gastroenterol Hepatol. 2021;12(4):1343-52. Go to original source... Go to PubMed...
  41. Nygard AB, Jorgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol. 2007 Aug 15;8:67. Go to original source... Go to PubMed...
  42. Park S, Kim JA, Jang HJ, Kim DH, Kim Y. Complete genome sequence of functional probiotic candidate Lactobacillus amylovorus CACC736. J Anim Sci Technol. 2023 Mar;65(2):473-7. Go to original source... Go to PubMed...
  43. Pechar R, Killer J, Salmonova H, Geigerova M, Svejstil R, Svec P, Sedlacek I, Rada V, Benada O. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol. 2017 Jul;67(7):2349-56. Go to original source... Go to PubMed...
  44. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol. 2007 Jan;73(1):179-85. Go to original source... Go to PubMed...
  45. Ruas-Madiedo P, de los Reyes-Gavilan CG. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 2005 Mar;88(3):843-56. Go to original source... Go to PubMed...
  46. Sabater C, Molinero-Garcia N, Castro-Bravo N, Diez-Echave P, Hidalgo-Garcia L, Delgado S, Sanchez B, Galvez J, Margolles A, Ruas-Madiedo P. Exopolysaccharide producing Bifidobacterium animalis subsp. lactis strains modify the intestinal microbiota and the plasmatic cytokine levels of BALB/c Mice according to the type of polymer synthesized. Front Microbiol. 2020 Nov 26;11:601233. Go to original source... Go to PubMed...
  47. Salman MK, Abuqwider J, Mauriello G. Anti-quorum sensing activity of probiotics: The mechanism and role in food and gut health. Microorganisms. 2023 Mar 20;11(3):793. Go to original source... Go to PubMed...
  48. Shen J, Zhang J, Zhao Y, Lin Z, Ji L, Ma X. Tibetan pig-derived probiotic Lactobacillus amylovorus SLZX20-1 improved intestinal function via producing enzymes and regulating intestinal microflora. Front Nutr. 2022 Mar 29;9:846991. Go to original source... Go to PubMed...
  49. Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One. 2019 Aug 28;14(8):e0220843. Go to original source... Go to PubMed...
  50. Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020 Apr 27;8(5):639. Go to original source... Go to PubMed...
  51. Tang X, Xiong K, Fang R, Li M. Weaning stress and intestinal health of piglets: A review. Front Immunol. 2022 Nov 24;13:1042778. Go to original source... Go to PubMed...
  52. Ueda Y, Kayama H, Jeon SG, Kusu T, Isaka Y, Rakugi H, Yamamoto M, Takeda K. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int Immunol. 2010 Dec;22(12):953-62. Go to original source... Go to PubMed...
  53. Weber N, Nielsen JP, Jakobsen AS, Pedersen LL, Hansen CF, Pedersen KS. Occurrence of diarrhoea and intestinal pathogens in non-medicated nursery pigs. Acta Vet Scand. 2015 Sep 30;57:64. Go to original source... Go to PubMed...
  54. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009 May;6(5):359-62. Go to original source... Go to PubMed...
  55. Yeo S, Lee S, Park H, Shin H, Holzapfel W, Huh CS. Development of putative probiotics as feed additives: Validation in a porcine-specific gastrointestinal tract model. Appl Microbiol Biotechnol. 2016 Dec;100(23):10043-54. Go to original source... Go to PubMed...
  56. Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2019 Jun;234(6):8008-18. Go to original source... Go to PubMed...
  57. Yuan L, Chu B, Chen S, Li Y, Liu N, Zhu Y, Zhou D. Exopolysaccharides from Bifidobacterium animalis ameliorate Escherichia coli-induced IPEC-J2 cell damage via inhibiting apoptosis and restoring autophagy. Microorganisms. 2021 Nov 16;9(11):2363. Go to original source... Go to PubMed...
  58. Zhou B, Albarracin L, Indo Y, Arce L, Masumizu Y, Tomokiyo M, Islam MA, Garcia-Castillo V, Ikeda-Ohtsubo W, Nochi T, Morita H, Takahashi H, Kurata S, Villena J, Kitazawa H. Selection of immunobiotic ligilactobacillus salivarius strains from the intestinal tract of wakame-fed pigs: Functional and genomic studies. Microorganisms. 2020 Oct 26;8(11):1659. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.