Vet Med - Czech, 2003, 48(4):99-107 | DOI: 10.17221/5756-VETMED

Localization of immunoreactivities for neuropeptides and neurotransmitter-synthesizing enzymes in the pterygopalatine ganglion of the pig

P. Podlasz, K. W±sowicz, J. Kaleczyc, M. £akomy, R. Bukowski
Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo II, Poland

Study on the presence of the selected biologically active substances in nerve structures of the porcine pterygopalatine ganglion was performed with the use of immunofluorescence and RT-PCR. All neurons in the ganglion were ChAT-, VAChT-, NOS- and VIP- positive. However, some neurons displayed strong immunoreactivity, while in other neurons, immunoreactivity was moderate, or weak. Somatostatin (SOM) was present in approx. 11% of neurons. Tyrosine hydroxylase-positive (TH-positive) neurons were not detected, although in single nerve cell bodies, TH antibody revealed very weak staining which could be attributed to some residual TH immunoreactivity. Immunoreactivity to NPY was found in 25% of all neuronal perikarya while PACAP was present only in 2-3% of them. More numerous neurons (6%) contained immunoreactivity to GAL. No neurons stained for SP or CGRP. Numerous ChAT-, VAChT-, NOS-, VIP-, and PACAP-positive, scarce SP and CGRP-positive, single SOM-, NPY- and GAL-positive nerve fibers were observed throughout the ganglion. No TH immunoreactivity was found in the nerve fibres. RT-PCR detected strong signal of the transcripts of ChAT, SOM, NOS, VIP, NPY, PACAP, and GAL. Only very weak signal was observed in case of TH, SP and CGRP. No RT-PCR was performed for VAChT message.

Keywords: pterygopalatine ganglion; pig; immunohistochemistry; RT-PCR

Published: April 30, 2003  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Podlasz P, W±sowicz K, Kaleczyc J, £akomy M, Bukowski R. Localization of immunoreactivities for neuropeptides and neurotransmitter-synthesizing enzymes in the pterygopalatine ganglion of the pig. Vet Med - Czech. 2003;48(4):99-107. doi: 10.17221/5756-VETMED.
Download citation

References

  1. Cheng S.B., Kuchiiwa S., Kuchiiwa T., Nakagawa S. (2000): Three novel neural pathways to the lacrimal glands of the cat: an investigation with cholera toxin B subunit as a retrograde tracer. Brain Res., 873, 160-164. Go to original source... Go to PubMed...
  2. Chomczynski P., Sacchi N. (1987): Single-step method of RNA isolation by acid guanidinum thiocyanate-phenolchloroform extraction. Anal. Biochem., 162, 156-159. Go to original source...
  3. Coulombe J., Bronner F. (1990): Development of cholinergic traits in the quail ciliary ganglion: expression of choline acetyltransferase-like immunoreactivity. Neuroscience, 37, 259-270. Go to original source... Go to PubMed...
  4. Ekbom K. (1999): Cluster headache: an overview. Ital. J. Neurol. Sci., 20, S1-S3. Go to original source... Go to PubMed...
  5. Elsas T., Edvinsson L., Sundler F., Uddman R. (1994): Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp. Eye Res., 58, 117-126. Go to original source... Go to PubMed...
  6. Gienc J., Kuder T. (1982): Morphology and topography of the pterygopalatine ganglion in the guinea pig. Folia Morphol. (Warszawa), 41, 63-71.
  7. Goadsby P.J. (2000): The pharmacology of headache. Prog. Neurobiol., 62, 509-525. Go to original source... Go to PubMed...
  8. Goadsby P.J., Uddman R., Edvinsson L. (1996): Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves. Brain Res., 707, 110-118. Go to original source... Go to PubMed...
  9. Grimes P.A., McGlinn A.M., Koeberlein B., Stone R.A. (1994): Galanin immunoreactivity in autonomic innervation of the cat eye. J. Comp. Neurol., 348, 234- 243. Go to original source... Go to PubMed...
  10. Hara H., Hamill G.S., Jacobowitz D.M. (1985): Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res. Bull., 14, 179-188. Go to original source... Go to PubMed...
  11. Kaleczyc J., Timmermans J.P., Majewski M., Lakomy M., Scheuermann D.W. (1999): Immunohistochemical properties of nerve fibres supplying accessory male genital glands in the pig. A colocalisation study. Histochem. Cell. Biol., 111, 217-228. Go to original source... Go to PubMed...
  12. Kondo T., Inokuchi T., Ohta K., Annoh H., Chang J.W. (2000): J Distribution, chemical coding and origin of nitric oxide synthase- containing nerve fibres in the guinea pig nasal mucosa. J. Auton. Nerv. Syst., 80, 71-79. Go to original source... Go to PubMed...
  13. Kuchiiwa S. (1990): Intraocular projections from the pterygopalatine ganglion in the cat. J. Comp. Neurol., 300, 301-308. Go to original source... Go to PubMed...
  14. Kuchiiwa S., Cheng S., Kuchiiwa T. (2000): Morphological distinction between vasodilator and secretomotor neurons in the pterygopalatine ganglion of the cat. Neurosci. Le., 291, 59. Go to original source... Go to PubMed...
  15. Leblanc G.G., Trimmer B.A., Landis S.C. (1987): Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase. Proc. Natl. Acad. Sci., U.S.A., 84, 3511-3515. Go to original source... Go to PubMed...
  16. Matsuda H., Kusakabe T., Kawakami T., Takenaka T., Sawada H., Tsukuda M. (1996): Coexistence of nitric oxide synthase and neuropeptides in the mouse vomeronasal organ demonstrated by a combination of double immunofluorescence labeling and a multiple dye filter. Brain Res., 712, 35-39. Go to original source... Go to PubMed...
  17. Moller M., Ravault J.P., Cozzi B. (1996): The chemical neuroanatomy of the mammalian pineal gland: neuropeptides. Neurochem. Int., 28, 23-33. Go to original source... Go to PubMed...
  18. Simons E., Smith P.G. (1994): Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes. J. Chem. Neuroanat., 7, 35-47. Go to original source... Go to PubMed...
  19. Szczurkowski A., Kuder T., Nowak E., Kuchinka J. (2002): Morphology, topography and cytoarchitectonics of the pterygopalatine ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest). Folia Morphol. (Warszawa), 61, 107-110.
  20. Talman W.T., Dragon D.N. (2000): Parasympathetic nerves influence cerebral blood flow during hypertension in rat. Brain Res., 873, 145-148. Go to original source... Go to PubMed...
  21. Toda N., Ayajiki K., Tanaka T., Okamura T. (2000): Preganglionic and postganglionic neurons responsible for cerebral vasodilation mediated by nitric oxide in anesthetized dogs. J. Cereb. Blood Flow. Metab., 20, 700-708. Go to original source... Go to PubMed...
  22. Uddman R., Tajti J., Moller S., Sundler F., Edvinsson L. (1999): Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res., 826, 193-199. Go to original source... Go to PubMed...
  23. Uemura Y., Sugimoto T., Nomura S., Nagatsu I., Mizuno N. (1987): Tyrosine hydroxylase-like immunoreactivity and catecholamine fluorescence in ciliary ganglion neurons. Brain Res., 416, 200-203. Go to original source... Go to PubMed...
  24. Vanderwerf F., Baljet B., Prins M., O o J.A. (1996): Innervation of the lacrimal gland in the cynomolgous monkey: a retrograde tracing study. J. Anat., 188 (Pt 3), 591-601. Go to PubMed...
  25. Warn J.D., Fan Q., Smith P.G. (1997): Decreased neuronal nitric oxide synthase-immunoreactivity and NADPHdiaphorase activity in rat pterygopalatine ganglion parasympathetic neurons and cerebrovascular innervation following long-term sympathectomy. Neurosci. Le., 232, 25-28. Go to original source... Go to PubMed...
  26. Yoshida K., Okamura T., Kimura H., Bredt D.S., Snyder S.H., Toda N. (1993): Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries. Brain Res., 629, 67-72. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.