Vet Med - Czech, 2005, 50(5):205-212 | DOI: 10.17221/5616-VETMED
A flexible and precise model for the dynamics of animal diseases with single outbreaks
- BOKU Wien - University of Natural Resources and Applied Life Sciences, Vienna, Austria
This article provides a general and accurate mathematical model for the epidemics dynamics of a large class of animal diseases. The issue is to offer to the scientist interested in applications a quite concise and practicable explanation how to validitate the model parameters by means of the software tool Microsoft Excel®. Furthermore, predictions concerning hypothetical scenarii can easily be obtained on the basis of this concept. As specific examples, calculations are presented for the BSE epidemics in the British UK and for an outbreak of foot-and-mouth disease in a district of Lower Austria.
Keywords: epidemics; animal diseases; mathematical model; BSE; foot-and-mouth disease
Published: May 31, 2005 Show citation
References
- Bayley N. (1975): The Mathematical Theory of Infectious Diseases and Its Applications. 2nd ed. Charles Griffin & Co., London.
- Bellman R., Cooke K.L. (1963): Differential-difference Equations. Academic Press, New York.
Go to original source...
- DEFRA (2004), Department for Environment, Food and Rural Affairs of the UK. Web site: http://www.defra.gov.uk/animalh/bse/statistics/bse/res_con.pdf
- Diekmann O., Heesterbeek J.A.P. (1999): Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Chichester, Wiley.
- Grenfell B.T., Dobson A.P. (1995): Ecology of Infectious Diseases in Natural Populations. Univ. Press, Cambridge.
Go to original source...
- Isham V., Medley G. (1996): Models for infectious humandiseases: their structure and relation to data. Publ.Newton Inst., Univ. Press, Cambridge.
Go to original source...
- Kermack W.O., McKendrick A.G. (1927): Contributions to the mathematical theory of epidemics I. Proceedings of the Royal Society of London, Series A, 115, 700-721.
Go to original source...
- Kermack W.O., McKendrick A.G. (1932): Contributions to the mathematical theory of epidemics II. Proceedings of the Royal Society of London, Series A, 138, 55-83.
Go to original source...
- Kermack W.O., McKendrick A.G. (1933): Contributions to the mathematical theory of epidemics III. Proceedings of the Royal Society of London, Series A, 141, 94-122.
Go to original source...
- Kühleitner M., Nowak W.G. (2003): Ein einfaches mathematisches Modell für die Epidemie-Dynamik bei BSE. Der Mathematische und Naturwissenschaftliche Unterricht, 56, 143-146.
- Murray J.D. (1990): Mathematical Biology. Springer Verlag, Berlin.
- Nowak W.G. (2004): Modellierung der britischen BSE-Epidemie mit DERIVE. Wissenschaftliche Nachrichten. Herausgegeben vom Österreichischen Bundes-ministerium für Bildung, Wissenschaft und Kultur, 122, 38-41.
- Schuster R. (1995): Grundkurs Biomathematik. Teubner Verlag, Stuttgart.
Go to original source...
- Timischl W. (1995): Biomathematik. 2. Aufl., Springer Verlag, Wien.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.