Vet Med - Czech, 2019, 64(9):400-406 | DOI: 10.17221/162/2018-VETMED

The effect of moderate treadmill exercise on the resistive index of the medial long posterior ciliary artery in dogsOriginal Paper

Michela Pugliese*,1, Monica Ragusa2, Vito Biondi1, Annamaria Passantino1, Kai Zhang3, Francesco Macri1
1 Department of Veterinary Science, University of Messina, Polo Universitario Annunziata, Messina, Italy
2 Department of Experimental and Clinical Medicine, University of Catanzaro, Viale Europa, Catanzaro, Italy
3 Department of Traditional Chinese Veterinary Medicine. Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Xiaoxihu, Qilihe District, Lanzhou city, Gansu province, People's Republic of China

The resistive index (RI) is an indirect measurement of arterial resistance by means of a ratio between the peak systolic and end diastolic velocities recorded with a spectral Doppler device, especially used to evaluate the vascular damage in ocular diseases such as glaucoma. Some ocular variables such as the intraocular pressure (IOP), the choroidal thickness, the axial length and the ocular blood flow may be influenced by physical exercise. The purpose of this study was to evaluate the influence of the exercise on the RI of the medial long posterior ciliary artery in dogs, and correlate the data obtained with the IOP values. Ten clinically healthy dogs were subjected to moderate physical exercise on a canine motorised treadmill at different speeds for 45 minutes. A colour Doppler examination was performed and the RI values were calculated for the medial long posterior ciliary artery at rest, immediately after the exercise, and after 60 minutes at the end of the exercise. At the same times, the IOP was recorded by applanation tonometry. The data were analysed by a two-way repeated ANOVA measurement in order to compare the RI and the IOP. Wilcoxon's test was applied for the post hoc comparison. Spearman's rank correlation for non-normal distribution was used to determine a relationship between the RI and the IOP. The at rest RI was 0.722 +/-0.022, IOP 12.38 +/3.21 mm Hg. A significant decrease in the RI was observed immediately after the exercise (0.697 +/-0.035) and during the passive recovery phase (0.682 +/-0.042). A significant decrease in the IOP (11+/3.39 mmHg) was recorded after 60 min of the passive recovery phase; at the end of the exercise, a slight decrease (12.29+/4.26 mm Hg) mm Hg was detected. During the test, a linear correlation between the RI and the IOP was observed. Our results suggest that exercise induces the modification of the ophthalmic blood flow in dogs, presumably related to the compensatory neuro-hormonal mechanisms.

Keywords: physical exercise, ocular variables, ocular blood flow

Published: September 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pugliese M, Ragusa M, Biondi V, Passantino A, Zhang K, Macri F. The effect of moderate treadmill exercise on the resistive index of the medial long posterior ciliary artery in dogs. Vet Med - Czech. 2019;64(9):400-406. doi: 10.17221/162/2018-VETMED.
Download citation

References

  1. Aburn NS, Sergott RC (1993): Orbital colour Doppler imaging. Eye 7, 639-647. Go to original source... Go to PubMed...
  2. Albaugh RA, Keil SM, Ou Z, Bello NM (2014): Intraocular pressure changes in equine athletes during endurance competitions. Veterinary Ophthalmology 17, 154-159. Go to original source... Go to PubMed...
  3. Akal A, Ulas T, Goncu T, Karakas E, Karakas O, Kurnaz F, Boyaci FN, Yilmaz OF, Bata A, Yildiz S (2014): Evaluation of resistive index using Color Doppler Imaging of orbital arteries in geriatric patients with hypertension. Indian Journal of Ophthalmology 62, 671-674. Go to original source... Go to PubMed...
  4. Baxter GM, Williamson TH (1995): Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation. Journal of Ultrasound in Medicine 14, 91-96. Go to original source... Go to PubMed...
  5. Beck D, Harris A, Evans D, Martin B (1995): Ophthalmic arterial hemodynamics during isometric exercise. Journal of Glaucoma 4, 317-321. Go to original source...
  6. Birch AA, Dirnhuber MJ, Hartley Davies R, Iannotti F, NeilDwyer G (1995): Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26, 834-837. Go to original source... Go to PubMed...
  7. Blum M, Bachmann K, Wintzer D, Riemer T, Vilser W, Strobel J (1999): Non-invasive measurement of the Bayliss effect in retinal autoregulation. Graefe´s Archives for Clinical and Experimental Ophthalmology 237, 296-300. Go to original source... Go to PubMed...
  8. Bude RO, Rubin JM (1999): Relationship between the resistive index and vascular compliance and resistance. Radiology 211, 411-417. Go to original source... Go to PubMed...
  9. Choi H, Lee Y, Yeon S, Lee H, Lee H (2011): Effects of antiglaucoma drugs on resistive index of the medial long posterior ciliary artery using color Doppler imaging in Beagle dogs. Journal of Veterinary Science 12, 99-101. Go to original source... Go to PubMed...
  10. Dudea SM (2011): Ultrasonography of the eye and orbit. Medical Ultrasonography 13, 171-174.
  11. Ferrandis I, Jakovljevic S, Aprea F, Corletto F (2013): Effect of two sedative protocols and hepatosplenic disease on Doppler indices of splenic arteries in dogs: a preliminary study. Veterinary Journal 197, 712-716. Go to original source... Go to PubMed...
  12. Findl O, Strenn K, Wolzt M (1997): Effects of changes in intraocular pressure on human ocular haemodynamics. Current Eye Research 16, 1024-1029. Go to original source... Go to PubMed...
  13. Gale MB, Wells AP, Wilson GW (2009): Effects of exercise on ocular physiology and disease. Survey of Ophthalmology 54, 349-355. Go to original source... Go to PubMed...
  14. Gelatt KN, Brooks DE (1999): The canine glaucomas. In: Gelatt KN (ed): Veterinary Ophthalmology. 3rd edn. Lippincott Williams and Wilkins, Philadelphia. 701-754 p.
  15. Gelatt KN, Miyabayashi T, Gelatt-Nicholson KJ, MacKay EO (2003): Progressive changes in ophthalmic blood velocities in Beagles with primary open angle glaucoma. Veterinary Ophthalmology 6, 77-84. Go to original source... Go to PubMed...
  16. Gelatt-Nicholson KJ, Gelatt KN, Mackay EO, Brooks DE, Newell SM (1999a): Doppler imaging of the ophthalmic vasculature of the normal dog: blood velocity measurements and reproducibility. Veterinary Ophthalmology 2, 87-96. Go to original source... Go to PubMed...
  17. Gelatt-Nicholson KJ, Gelatt KN, Mackay EO, Brooks DE, Newell SM (1999b): Comparative Doppler imaging of the ophthalmic vasculature in normal beagles and beagles with inherited primary open angle glaucoma. Veterinary Ophthalmology 2, 97-105. Go to original source... Go to PubMed...
  18. Giudice E, Giannetto C, Casella S, Piccione G (2010): The effect of aerobic exercise on intraocular pressure in horse. Acta Veterinaria Brno 79, 409-413. Go to original source...
  19. Hong J, Zhang H, Kuo DS, Wang H, Huo Y, Yang D, Wang N (2014): The short-term effects of exercise on intraocular pressure, choroidal thickness and axial length. PLoS One 29. doi: 10.1371/journal.pone.0104294. Go to original source... Go to PubMed...
  20. Kallberg ME, Brooks DE, Komaromy AM, Miyabayashi T, Bradshaw PT (2003): The effect of an L-type calcium channel blocker on the hemodynamics of orbital arteries in dogs. Veterinary Ophthalmology 6, 141-146. Go to original source... Go to PubMed...
  21. Kiss B, Dallinger S, Polak K, Findl O, Eichler HG, Schmetterer L (2001): Ocular hemodynamics during isometric exercise. Microvascular Research 61, 1-13. Go to original source... Go to PubMed...
  22. Kiuchi Y, Mishima HK, Hotehama Y, Furumoto A, Hirota A, Onari K (1994): Exercise intensity determines the magnitude of IOP decrease after running. Japanese Journal of Ophthalmology 38, 191-195.
  23. Lee H, Chang D, Eom K, Choi H, Seo K, Choi M, Yoon J (2002): Use of color Doppler imaging for determining the resistive index of the medial long posterior ciliary artery in clinical normal conscious dogs. American Journal of Veterinary Research 63, 211-214. Go to original source... Go to PubMed...
  24. Liu CJ, Chou Y, Chou JC, Chiou HJ, Chiang SC, Liu JH (1997): Retrobulbar haemodynamic changes studied by colour Doppler imaging in glaucoma. Eye 11, 818-826. Go to original source... Go to PubMed...
  25. Lovasik JV, Kergoat H, Riva CE, Petrig BL, Geiser M (2003): Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Investigative Ophthalmology & Visual Science 44, 2126-2132. Go to original source... Go to PubMed...
  26. MacKinnon JR, McKillop G, O'Brien C, Swa K, Butt Z, Nelson P (2000): Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmologica Scandinavia 78, 386-389. Go to original source... Go to PubMed...
  27. Macri F, Pugliese M, Di Petro S, Coco MA, Liotta L, Niutta PP, Nardi S, Quartuccio M, Lanteri G, Piccionello AP (2015): Doppler ultrasonographic estimation of renal resistive index in horse: Comparison between left and right kidneys. Journal of Equine Veterinary Science 35, 111-115. Go to original source...
  28. Martin B, Harris A, Hammel T, Malinovsky V (1999): Mechanism of exercise-induced ocular hypotension. Investigative Ophthalmology & Visual Science 40, 1011-1015.
  29. Movaffaghy A, Chamot SR, Petrig BL, Riva CE (1998): Blood flow in the human optic nerve head during isometric exercise. Experimental Eye Research 67, 561- 568. Go to original source... Go to PubMed...
  30. Munk P, Downey D, Nicolle D, Vellet AD, Rankin R, Lin DT (1993): The role of colour flow Doppler ultrasonography in the investigation of disease in the eye and orbit. Canadian Journal of Ophthalmology 28, 171-176.
  31. Nassr MA, Morris CL, Netland PA, Karcioglu ZA (2009): Intraocular pressure change in orbital disease. Survey of Ophthalmology 54, 519-544. Go to original source... Go to PubMed...
  32. Nemeth J, Knezy K, Tapaszto B, Kovacs R, Harkanyi Z (2002): Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color Doppler study in healthy subjects. Graefes Archives for Clinical and Experimental Ophthalmology 240, 835-840. Go to original source... Go to PubMed...
  33. Novellas R, Espada Y, Ruiz de Gopegui R (2007): Doppler ultrasonographic estimation of renal and ocular resistive and pulsatility indices in normal dogs and cats. Veterinary Radiology and Ultrasound 48, 69-73. Go to original source... Go to PubMed...
  34. Ostrowska J, Kielbowicz Z, Zaleska-Dorobisz U, Atamaniuk W, Pietsch-Fulbiszewska A, Kinda W (2016): Resistive index (RI) obtained in renal interlobar arteries of normal dogs and cats by means of Doppler ultrasonography. Pakistan Veterinary Journal 36, 45-48.
  35. Polska E, Simader C, Weigert G, Doelemeyer A, Kolodjaschna J, Scharmann O, Schmetterer L (2007): Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Investigative Ophthalmology & Visual Science 48, 3768-3774. Go to original source... Go to PubMed...
  36. Pournaras CJ, Riva CE, Bresson-Dumont H, De Gottrau P, Bechetoille A (2004): Regulation of optic nerve head blood flow in normal tension glaucoma patients. European Journal Ophthalmology 14, 226-235. Go to original source... Go to PubMed...
  37. Pozniak MA, Kelcz F, Stratta RJ, Oberley TD (1988): Extraneous factors affecting resistive index. Investigative Radiology 23, 899-904. Go to original source... Go to PubMed...
  38. Rankin SJ (1999): Color Doppler imaging of the retrobulbar circulation in glaucoma. Survey of Ophthalmology 43, S176-S182. Go to original source... Go to PubMed...
  39. Roff EJ, Harris A, Chung HS, Hosking SL, Morrison AM, Halter PJ, Kagemann L (1999): Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefe's Archives for Clinical Experimental Ophthalmology 237, 984-990. Go to original source... Go to PubMed...
  40. Rojanapongpun P, Drance SM (1993): Velocity of ophthalmic arterial flow recorded by Doppler ultrasound in normal subjects. American Journal of Ophthalmology 115, 174-180. Go to original source... Go to PubMed...
  41. Sayin N, Kara N, Pekel G, Altinkaynak H (2015): Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography. Indian Journal Ophthalmology 63, 445-450. Go to original source... Go to PubMed...
  42. Szatmari V, Sotonyi P, Voros K (2001): Normal duplex Doppler waveforms of major abdominal blood vessels in dogs: a review. Veterinary Radiology and Ultrasound 42, 93-107. Go to original source... Go to PubMed...
  43. Vrbovska T, Hornakova L, Drahovska Z, Kozar M, Trbolova A (2017): The use of colour Doppler imaging to determine the effects of administration of butorphanol, medetomidine and ketamine on indices of feline ocular impedance. Veterinarni Medicina 62, 35-40. Go to original source...
  44. Williamson TH, Harris A (1996): Color Doppler ultrasound imaging of the eye and orbit. Survey of Ophthalmology 40, 255-256. Go to original source... Go to PubMed...
  45. Wylegała A (2016): The effects of physical exercises on ocular physiology: A review. Journal of Glaucoma 25, 843-849. Go to original source... Go to PubMed...
  46. Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, Chan JCH, So KF (2018): Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmologica 96, e676-e691. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.