Vet Med - Czech, 2019, 64(12):531-538 | DOI: 10.17221/80/2019-VETMED

Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine modelOriginal Paper

JW Yun1, SY Heo3, MH Lee2, HB Lee1
1 College of Veterinary Medicine, Chungnam National University, Dajeon, Republic of Korea
2 Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
3 College of Veterinary Medicine, Jeonbuk National University Specialized Campus, Iksan, Republic of Korea

Critical-sized bone defects are a difficult problem in both human and veterinary medicine. To address this issue, synthetic graft materials have been garnering attention. Abundant in vitro studies have proven the possibilities of poly(lactic-acid) (PLA) scaffolds and poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) nanofibres for treating bone defects. The present study aimed at conducting an in vivo assessment of the biological performance of a three dimensional (3D)-printed PLA scaffold filled with a PLGA/HAp nanofibrous scaffold to estimate its potential applications in bone defect reconstruction surgery. Defects were created in a 20 mm-long region of the radius bone. The defects created on the right side in six Beagle dogs (n = 6) were left untreated (Group 1). The defects on the left side (n = 6) were filled with 3D-printed PLA scaffolds incorporated with PLGA/Hap nanofibres with gelatine (Group 2). The other six Beagle dog defects were made bilaterally (n = 12) and filled with the same material as that used in Group 2 along with recombinant bone morphogenetic protein 2 (rhBMP-2) (Group 3). Both the radiological and histological examinations were performed for observing the reaction of the scaffold and the bone. Micro-computed tomography (CT) was utilised for the evaluation of the bone parameters 20 weeks after the experiment. The radiological and histological results revealed that the scaffold was biodegradable and was replaced by new bone tissue. The micro-CT revealed that the bone parameters were significantly (P < 0.05) increased in Group 3. Based on these results, our study serves as a foundation for future studies on bone defect treatment using synthetic polymeric scaffolds.

Keywords: bone regeneration; bone tissue engineering; FDM technology; electrospinning; osteogenic factor

Received: June 26, 2019; Accepted: October 29, 2019; Published: December 31, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yun J, Heo S, Lee M, Lee H. Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model. Vet Med - Czech. 2019;64(12):531-538. doi: 10.17221/80/2019-VETMED.
Download citation

References

  1. Bhardwaj N, Kundu SC (2010): Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28, 325-347. Go to original source... Go to PubMed...
  2. Gabet Y, Muller R, Regev E, Sela J, Shteyer A, Salisbury K, Chorev M, Bab I (2004): Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone 35, 65-73. Go to original source... Go to PubMed...
  3. Gregor A, Filova E, Novak M, Kronek J, Chlup H, Buzgo M, Blahnova V, Lukasova V, Bartos M, Necas A, Hosek J (2017): Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3d printer. Journal of Biological Engineering 11, 31. doi: 10.1186/s13036-017-0074-3. Go to original source... Go to PubMed...
  4. Gremare A, Guduric V, Bareille R, Heroguez V, Latour S, L'heureux N, Fricain JC, Catros S, Le Nihouannen D (2018): Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A 106, 887-894. Go to original source... Go to PubMed...
  5. Haider A, Kim S, Huh MW, Kang IK (2015): BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. BioMed Research International 2015. doi: 10.1155/2015/281909. Go to original source... Go to PubMed...
  6. Heo SY, Kim HY, Kim NS (2017): Evaluation of Poly(lactideco-glycolide)/hydroxyapatite nanofibres for reconstruction of critical-sized segmental bone defects in a canine model. Veterinarni Medicina 62, 325-332. Go to original source...
  7. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011): Poly(lactideco-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. Journal of Materials Science: Materials in Medicine 22, 1873-1884. Go to original source... Go to PubMed...
  8. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX (2015): Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of Orthopaedic Translation 3, 95-104. Go to original source... Go to PubMed...
  9. Lipner J, Liu W, Liu Y, Boyle J, Genin GM, Xia Y, Thomopoulos S (2014): The mechanics of plga nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. Journal of the Mechanical Behavior Biomedical Materials 40, 59-68. Go to original source... Go to PubMed...
  10. Makadia HK, Siegel SJ (2011): Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377-1397. Go to original source... Go to PubMed...
  11. Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A (2015): Nanomedicine applications in orthopedic medicine: State of the art. International Journal of Nanomedicine 10, 6039-6053. Go to original source... Go to PubMed...
  12. Murugan R, Ramakrishna S (2005): Development of nanocomposites for bone grafting. Composites Science and Technology 65, 2385-2406. Go to original source...
  13. Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, Albertsson AC (2011): Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 12, 1250-1258. Go to original source... Go to PubMed...
  14. Stachewicz U, Qiao T, Rawlinson SCF, Almeida FV, Li WQ, Cattell M, Barber AH (2015): 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia 27, 88-100. Go to original source... Go to PubMed...
  15. Talbot M, Zdero R, Garneau D, Cole PA, Schemitsch EH (2008): Fixation of long bone segmental defects: A biomechanical study. Injury 39, 181-186. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.